
Docx2Go: Collaborative Editing of Fidelity Reduced
Documents on Mobile Devices

Krishna P. N. Puttaswamy
∗

Microsoft Research Silicon Valley
Mountain View, CA 94043
krishnap@cs.ucsb.edu

Catherine C. Marshall
Microsoft Research Silicon Valley

Mountain View, CA 94043
cathymar@microsoft.com

Venugopalan
Ramasubramanian

Microsoft Research Silicon Valley
Mountain View, CA 94043
rama@microsoft.com

Patrick Stuedi
Microsoft Research Silicon Valley

Mountain View, CA 94043
pstuedi@microsoft.com

Douglas B. Terry
Microsoft Research Silicon Valley

Mountain View, CA 94043
terry@microsoft.com

Ted Wobber
Microsoft Research Silicon Valley

Mountain View, CA 94043
wobber@microsoft.com

ABSTRACT
Docx2Go is a new framework to support editing of shared docu-
ments on mobile devices. Three high-level requirements influenced
its design — namely, the need to adapt content, especially textual
content, on the fly according to the quality of the network connec-
tion and the form factor of each device; support for concurrent, un-
coordinated editing on different devices, whose effects will later be
merged on all devices in a convergent and consistent manner with-
out sacrificing the semantics of the edits; and a flexible replication
architecture that accommodates both device-to-device and cloud-
mediated synchronization. Docx2Go supports on-the-go editing for
XML documents, such as documents in Microsoft Word and other
commonly used formats. It combines the best practices from con-
tent adaptation systems, weakly consistent replication systems, and
collaborative editing systems, while extending the state of the art
in each of these fields. The implementation of Docx2Go has been
evaluated based on a workload drawn from Wikipedia.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Design, Experimentation, Performance

1. INTRODUCTION
Sophisticated mobile devices have revolutionized the kinds of

work people can do away from their offices; smart phones, net-
books, and niche devices such as e-book readers allow people to
use workplace applications opportunistically in a range of settings.
Mobile broadband networks mean that users need not plan ahead
to work effectively in locations away from their offices; by design,
they are able to access their documents from wherever they are.
Cafes have become libraries and airplanes have become cubicles
that move at 500 miles per hour. With our documents in the cloud,
collaborative work appears seamless.
∗Krishna is a Ph.D. candidate at the University of California at
Santa Barbara. He was an intern at Microsoft Research Silicon Val-
ley during this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

But is it? Often real-world situations constrain normal collab-
orative activity: connectivity may be intermittent, for example, or
bandwidth imposes fixed costs. Transmission may be interrupted,
leaving a frustrated user with a partial copy of a long document.
Some devices are more capable than others–a half-page figure that
enhances the final version of an article may be unnecessary or inap-
propriate when the penultimate version is reviewed from an iPhone-
sized screen. Collaborators may be co-located away from their of-
fices, ready to exchange documents, but unable to reach a central
server to do so. Multiple authors may make uncoordinated changes
to their local copies of a document without consulting one another.
In other words, there are invariably small snags in the seamless fab-
ric of many collaborative activities.

In this paper, we introduce an application framework that ad-
dresses the requirements of one such collaborative activity, ‘editing
on the go.’ We aim to support the kind of editing collaborators
might perform using a broad range of devices as they move op-
portunistically between reading, reviewing, and writing or between
data gathering, aggregating, and analysis.

To design such an application, we build on previous work in
three somewhat independent areas of mobile computing and semi-
synchronous collaboration: (1) methods for content adaptation; (2)
platforms for weakly consistent replication; and (3) mechanisms
that support collaborative editing. Content adaptation methods al-
low each participant and each device that is involved in a collabo-
ration to store and manipulate the portions of a document that are
relevant to the participant and that meet the constraints introduced
by the situation at hand such as high-cost bandwidth or limited stor-
age [3, 5, 6, 9]. Weakly consistent replication platforms enable data
to be synchronized among loosely-organized networks in a way that
guarantees that changes originating from any device can propagate
throughout the network [2, 11, 13]. Finally, two decades’ worth of
collaborative editing research has resulted in reliable mechanisms
for ordering edits to a shared document and for resolving concurrent
changes [7, 12, 14, 18].

Docx2Go weaves these three technologies together in an appli-
cation framework that addresses the challenges of collaboratively
editing XML documents in a mobile environment. By supporting
XML, Docx2Go can handle many modern formats, including for-
mats that conform to OOXML and ODF standards and documents
(including slides and spreadsheets) produced using the latest ver-
sion of Microsoft Office, which runs on a variety of mobile de-
vices. It also means that the application can be used to collaborate
over Web-based documents, such as the interlinked pages that are
the basis for wikis or other Web sites.

Each document in Docx2Go is represented as a collection of
XML elements. This document structure enables us take advantage

345



of–and harmonize–key elements of the three independent compo-
nent technologies. Content adaptation, conflict detection and res-
olution, and synchronization may each be based on functional ele-
ments of an XML document such as paragraphs, headings, or fig-
ures.

For example, the user who is paying for her smart phone service
by the number of kilobytes transmitted can specify that she only
wants to see the set of paragraphs that constitute the introduction of
a paper she is working on with her co-authors. The collaborators
editing the first paragraph of the introduction and last paragraph of
the conclusion will not incur the overhead of a costly merge, since
conflicts do not arise between different uniquely identified XML
elements. Devices can synchronize updated elements directly with
other devices over a peer-to-peer network, keeping synchronization
overhead low (only updated elements are synchronized) and flex-
ible (a centralized service need not be contacted). Using a fine-
grained representation based on a document’s XML structure al-
lows the technologies to be woven together in an effective way.

Similarly, biodiversity field data that is gathered by experts and
citizen-scientists and stored in Excel spreadsheets can be selectively
exchanged, updated, cleaned, and consolidated without the need to
contact a central server. Small mobile devices may be used in the
field, while more powerful computing capabilities may be brought
to bear on large, aggregated datasets. It is easy to envision many
different scenarios that take advantage of XML documents used in
situations away from the normal workplace.

In this paper, we demonstrate the efficiencies obtained by ex-
ploiting XML document formats in the Docx2Go implementation,
and discuss the kinds of metadata that are necessary for maintaining
document structure in this environment. We then evaluate aspects
of system performance using a workload derived from the edit his-
tory of a set of Wikipedia pages over a specified period.

The contributions of this research are threefold. One, we identi-
fied the requirements of this important family of applications, edit-
ing on the go, and confirmed that emerging XML-based standards
can be leveraged to meet these requirements. Two, we designed a
mobile document editing framework, Docx2Go, that supports col-
laborative editing on incomplete documents and achieves eventual
consistency by incorporating advancements in content adaptation,
optimistic replication, and groupware systems. Three, we demon-
strated the specific advantages of our approach through a prototype
implementation of the proposed framework and an application for
editing Wikipedia pages.

2. MOTIVATION, REQUIREMENTS
AND CHALLENGES

We use a scholarly writing scenario (Figure 1) to highlight re-
quirements for a mobile collaborative document editing applica-
tion. We have chosen this scenario because of its familiarity; in
practice, we expect Docx2Go to be useful in a variety of less famil-
iar settings such as eScience, in which many datasets are assembled
and manipulated in Excel, or in domains that make extensive use
of other types of XML documents such as PowerPoint slide sets,
wikis, or Web pages.

2.1 A paper writing scenario
Alice and Bob, two of Professor Smith’s graduate students, are

writing a journal submission together. Alice is the lead author. She
has written most of its sections and will ensure that the paper takes
a coherent shape before submission. Bob, a junior graduate student
who helped Alice with experiments, is producing the sections on the
experiments and their implications.

Alice:
entire
paper

Bob:
evaluation

section

Professor 
Smith:

abstract,
introduction,

&
conclusion

Carl:
text without 

figures

central
repository

Figure 1: Example scenario to illustrate collaborative editing activities
from mobile devices.

Although he is on vacation in Fiji, Professor Smith is overseeing
the submission. He is particularly concerned about how the paper
is framed, so he plans to take a close look at the paper’s abstract,
introduction, and conclusion. However, he is equipped only with
a smart phone that has limited editing capabilities, and to make
matters worse, he is using an international roaming data connec-
tion that charges by the byte. The unfortunate Professor Smith has
requested that Alice and Bob send him the relevant sections of the
paper via email; he will return his edits by email as well.

Because Alice and Bob want feedback on the entire paper, they
recruit Carl, an experienced researcher in their group, to review the
whole submission. Carl is happy to help them; he will be able to
try out his new e-book reader during his commute home by train.
He makes comments and annotations on the document and uploads
them to Alice and Bob through a rather spotty mobile data con-
nection. Meanwhile, Alice has set up a centralized repository so
her co-author Bob can upload his contributions to the paper, while
she takes responsibility for merging Professor Smith’s revisions and
Carl’s suggestions into a new version of the paper.

2.2 Requirements
This scenario illustrates some common situations that arise when

people edit documents on mobile devices. These situations high-
light three broad requirements of applications intended to support
this activity.

• Uncoordinated multi-author editing. Despite the advent
of mobile broadband networks, mobile data connectivity re-
mains unreliable even in urban areas, and the latency of ac-
cessing services over 3G networks remains high. Conse-
quently, users want interactive applications, such as editors,
to run directly on their mobile devices and to continue oper-
ating if the device becomes disconnected. Local editing leads
to the possibility that multiple authors may make simultane-
ous, uncoordinated changes to the same document. Users ex-
pect that concurrent operations will be identified and merged
automatically when possible, and that they will be able to
override any inappropriate automatic merges.

• Dynamic content adaptation. Because mobile devices may
have bandwidth, power, and storage limitations, users may
find it advantageous to work with partial copies of longer
documents. They may only be interested in portions of the
document, or it may be impractical to work with a complete
copy locally. Furthermore, transmission problems sometimes
lead to truncated or incomplete documents; this need not pre-
vent users from editing the content they have successfully re-

346



ceived. In general, users must be able to edit and synchronize
changes to these partial copies.

• Flexible sharing and synchronization. Users may find them-
selves in a variety of situations when they collaborate; thus
they may prefer different mechanisms for sharing documents
and synchronizing their changes. Systems such as cloud ser-
vices that offer a single point of synchronization may seem
risky to some users: the service may be unavailable or may
violate privacy. Such users may instead prefer to exchange
updated documents through other means such as e-mail, peer-
to-peer replication platforms, or removable media [8]. There-
fore, our mobile collaborative editing application must have
a flexible synchronization architecture.

Although each of these challenges is familiar to systems research-
ers, to-date they have not been addressed in a unified application
framework. For example, our previous work on Polyjuz [17] sup-
ports peer-to-peer weakly consistent replication on content-adapted,
or reduced fidelity, data. However, Polyjuz is designed to handle
well-structured data (such as simple database records consisting of
attribute-value pairs), rather than textual content, and does not sup-
port the fine-grained updates and concurrent conflicts that arise in
the course of collaborative editing. In the rest of this section, we
elaborate on the three requirements from the perspective of system
design and point out the challenges that have not been fully ad-
dressed by prior work.

2.3 System implications and challenges

Uncoordinated multi-author editing
Our scholarly writing scenario–along with other collaborative edit-
ing scenarios–suggests the following general system architecture.
A document is replicated on multiple devices owned by the same
or different authors. Devices may be mobile and are supported by
different types of network connectivity, depending on availability.
Users can edit a document as presented to them on the device, even
when the device is not connected to any network. When the oppor-
tunity arises, a device may synchronize with another device, auto-
matically or user-initiated, exchanging updates to the document.

Weakly consistent replication systems such as Bayou [11], Cim-
biosys [13], and PRACTI [2] support this system architecture. They
provide efficient mechanisms for distinguishing conflicting updates,
which occur when users make updates to the same document from
two different devices, from sequential updates, which occur when
a user makes an update to the document after obtaining an updated
copy of the document from another user. Conflict detection en-
ables such replication systems to determine when to apply changes
received from a remote device, thereby overwriting outdated local
data, and when to report or resolve a conflict.

In collaborative editing scenarios in which co-authors modify a
shared document on multiple devices, concurrent updates to the
document will be the norm, rather than an exception, unless the
authors take turns editing the document. Resolving such conflicts
is problematic in current replication systems; author intervention
may be required if an application-specific merge procedure fails to
resolve conflicting modifications to the document.

Ideally, concurrent updates to unrelated or distant portions of the
document should be merged automatically. For instance, if Alice
edits the introduction and Bob changes the evaluation section, the
application should simply merge the two updates without interven-
tion from either author. On the other hand, if Professor Smith re-
vises the abstract while Alice corrects a typo in it, a purely auto-
mated merge strategy might lead to incoherent writing or lost edits.

Conflict detection and resolution should take into account the se-
mantics of operations such as insert, delete, update and move.

Current collaborative editing systems allow operations to be track-
ed at fine granularity. Multiple authors can change the same doc-
ument simultaneously without immediate coordination; the system
ensures that the document state on each device converges over time.
However, such systems are not designed to handle content that users
are editing at different fidelity levels. Our scenario introduces the
notion that not all devices have the complete document.

Dynamic content adaptation
Users may only want (or be able to get) an incomplete or partial
copy of a document on a device. The example scenario illustrates
two (among many) potential reasons for content adaptation: (1) to
reduce the bandwidth consumed, saving money for users with pay-
per-use contracts, and (2) to make data transmission more efficient
by eliminating unnecessary parts of the document, thus providing a
better user experience.

Previous research has explored dynamic content adaptation to ad-
dress devices’ bandwidth and form factor constraints. Projects such
as Odyssey [9], PageTailor [3], and Puppeteer [5] have primarily
focused on omitting embedded multimedia or reducing content size
through transcoding. In this paper, we take content adaptation a
step further and focus on adapting textual content for widely used
document formats. Specifically, we dynamically adapt the content
structure of documents so that partial content can be useful to users.

Using XML structure to adapt textual content provides several
benefits. Often people are only concerned with a limited portion
of a longer document or large spreadsheet when they are work-
ing away from the office; they are focused on a particular task that
makes sense away from many of their usual resources. Download-
ing the entire document or exchanging it during subsequent syn-
chronizations can be costly or frustrating if the network connection
is slow. Moreover, fine-grained content adaptation may be used
in other ways, such as preserving privacy, implementing a security
policy, or reducing complexity. For example, mobile devices used
outside the workplace may only receive the portions of a document
that do not contain sensitive information.

Yet to achieve these benefits, we must address some countervail-
ing challenges. Specifically, it is more difficult to specify which
portions of a semi-structured XML document are of interest to par-
ticular users or devices. One way to adapt content is to divide the
document into well-defined portions and specify which subset of
the portions each device gets. In fact, it is common practice for au-
thors to break a longer document into files that correspond to the
document’s sections. This work-around allows authors to work on
the sections more or less independently (although the more pieces
the document is divided into, the more painful it is to manage them).
Many document editors provide facilities to help authors reassem-
ble these sections after the editing is finished.

Docx2Go allows devices to selectively download and edit por-
tions of a text document, and in so doing must necessarily address
the following research questions. First, how does a device or user
define the portion(s) of a document to download? Second, how
does the system track the changes to textual elements and synchro-
nize these changes with the full or partial copies of the document
on other devices? Third, do the full and partial copies of the col-
laboratively edited document converge to a consistent state on all
devices?

Flexible sharing and synchronization
Currently users can collaboratively edit documents several ways.
They may store documents on a central server (as they would if they

347



<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<w:document xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main" >
<w:body>

<w:p w:rsidR="00CC2B60" w:rsidRDefault="00CC2B60" w:rsidP="00CC2B60">
<w:pPr><w:pStyle w:val="Heading1" /> </w:pPr>
<w:r><w:t>Title</w:t></w:r>

</w:p>
<w:p w:rsidR="00B20CDB" w:rsidRDefault="00B20CDB" w:rsidP="00B20CDB">

<w:pPr><w:pStyle w:val="Heading3" /> </w:pPr>
<w:r><w:t>Introduction</w:t></w:r>
</w:p>

<w:p w:rsidR="00B20CDB" w:rsidRDefault="00B20CDB“>
<w:r><w:t>This is an example word document.</w:t></w:r>

</w:p>
<w:p w:rsidR="000B4459" w:rsidRDefault="000B4459“>

<w:r><w:t>It illustrates the internal structure.</w:t></w:r>
</w:p>
<w:p w:rsidR="00FF49CC" w:rsidRDefault="00FF49CC">

<w:r><w:t>It’s very pretty!</w:t></w:r>
</w:p>
<w:p w:rsidR="00B20CDB" w:rsidRDefault="00B20CDB" w:rsidP="00B20CDB">

<w:pPr><w:pStyle w:val="Heading3" /></w:pPr>
<w:r><w:t>Conclusion</w:t></w:r>

</w:p>
<w:p w:rsidR="0015144E" w:rsidRDefault="0015144E”>
<w:r><w:t>Or, is it?</w:t></w:r>
</w:p>

</w:body>
</w:document>

Figure 2: An example Microsoft Word document rendered on the screen and its underlying XML structure.

used Google Docs or Office Live) and either edit the documents di-
rectly on the server, or edit them locally and upload them later to
maintain consistency. These services may provide centralized lock-
ing (in lieu of collaborative editing) or some support for discon-
nected, concurrent operation. Alternatively, authors can share doc-
uments through a weakly consistent file replication system, such
as Microsoft Sync Framework or Live Mesh, which tracks updates
to items and synchronizes updated files among the devices. Such
systems often provide peer-to-peer synchronization and conflict de-
tection but not at the fine granularity required by synchronous col-
laboration. In practice, co-authors often develop their own ad hoc
mechanisms for coordinating their writing (using email, for exam-
ple, or mixed modes of communication) [8].

Because people who work together don’t necessarily use the same
platforms or connect to the network the same way, an effective col-
laborative editing application should be agnostic to the transport
medium used for sharing and synchronizing updates. Some users
adopt the concurrent editing functionality offered by Google Docs
or Office Live. Others edit documents using local editors and syn-
chronize the files using versioning systems such as CVS or repli-
cation frameworks such as Live Mesh. Others simply exchange
updates through email and merge them by hand in the local file sys-
tem. Each method has its own strengths and shortcomings. In the
next section, we show how elements of these different techniques
can be assembled–in conjunction with some additional innovations
that we will discuss–to build a practical and useful document edit-
ing system for mobile devices.

3. DESIGN
Docx2Go supports collaborative editing of a document1 within a

system consisting of multiple devices. One of the devices initially
creates the document, which is then replicated on other devices.
Each device, called a replica, stores a local copy of the document
and allows users to perform editing operations on it. A replica ob-
tains its initial copy of the document and subsequent changes to the
document by synchronizing with other replicas.

A replica might have a complete or a partial (content-adapted)
local copy of the document. Adaptation of content to generate a
partial copy happens during synchronization. The content adapta-
tion process can be driven by the user, by an automated tool that em-
ploys clever heuristics for content selection, or may occur naturally
as a result of a disrupted network connection. Section 4 describes
an example of a content adaptation heuristic that can be applied to
Wikipedia pages.

1We talk about a single document in this section for clarity; the
techniques apply equally well to replicating multiple documents.

An application on top of the Docx2Go framework enables edit-
ing for a particular document type, such as Word, Excel or Power-
Point. This application understands the document format and im-
plements format-specific operations. It may also provide a custom,
collaboration-aware editing tool for users to edit the document. Al-
ternatively, it might just support an off-the-shelf editing tool such
as Microsoft Word or PowerPoint, while it serves as the bridge be-
tween the editing tool and the Docx2Go framework. Section 4 de-
scribes the application’s role in greater detail.

3.1 Document structure and decomposition
The Docx2Go framework supports XML-based document types.

XML is the de-facto basis for recently proposed open standards,
most notably ODF and OOXML. Popular office application suites
such as OpenOffice and Microsoft Office have already adopted these
standards—ODF and OOXML respectively—for representing text
documents, presentations, and spreadsheets.

Figure 2 illustrates the XML structure of a Microsoft Office 2007
Word document, stored as a “ḋocx” file. The document file is essen-
tially a compressed directory that contains additional sub-directories
and XML files. A few of the XML files are used to store document
metadata, such as formatting styles, fonts, and application settings.
The key content file is called document.xml; an example of this type
of file is shown in Figure 2. The outer layers consist of elements
called document and body. The body contains a sequence of sub-
elements, each representing a paragraph or other content such as
a figure or a table (not shown in the figure). Each of these inner
elements may contain additional nested sub-elements. Other doc-
uments, such as PowerPoint presentations and Excel spreadsheets,
have a similar internal XML representation albeit with a different
structure.

The key design decision we made in Docx2Go is to treat a well-
formed XML element as the unit of granularity for content adap-
tation, conflict detection, and update exchange. For example, in a
Word document, the above operations can be supported in terms
of paragraph, figure, or table elements inside the body element.
This choice provides a uniquely advantageous point in the trade-
off between flexibility, user experience, and system efficiency, as
described below.

Content adaptation. A natural basis for selecting content from
a document is to use the visible, logical units of organization in
a document: for example, chapters or sections. Unfortunately, a
document’s logical structure is often simply indicated using visual
style. Structural demarcations such as section or chapter headings
are only distinguished from other paragraphs by using, for example,
a different style or font, as shown in Figure 2. An automated system

348



might therefore require human assistance to identify and separate
the logical units.

Element-level content adaptation provides a flexible alternative.
A partial document can be now derived in multiple ways: 1) A
user can generate the partial version she wants by culling sections
from the original. 2) The partial document can be generated au-
tomatically using rules (for example, to include all text but omit
tables, figures and embedded objects). 3) Or, a truncated version
of the document may be the natural result of a terminated network
connection that produces a partial document composed of whatever
well-formed elements that were downloaded.

Concurrent changes. The research literature describes two dif-
ferent approaches to conflict detection. Weakly consistent replica-
tion systems [16] have traditionally treated all concurrent changes
to an item as conflicting. By contrast, some collaborative editing
systems have avoided conflict detection entirely by breaking down
a document into characters [7, 12, 14].

Conflict detection at the level of fine-grained elements provides a
balance between the two extremes. Concurrent changes to distinct
elements in independent parts of the document—a common occur-
rence in collaborative editing—need not trigger annoying conflict
notifications for the user to inspect and resolve. At the same time,
concurrent changes to contextually related units of the document
can be identified and the users notified. This unit of conflict detec-
tion may vary according to the element type: a paragraph for text, a
cell for a table, and the entire figure element for figures. Moreover,
the replication metadata required for tracking changes and detecting
conflicts can be stored as a special attribute in the XML element.

Update exchange. Finally, recognizing and exchanging updates
at the unit of fine-grained elements leads to a bandwidth-efficient
synchronization protocol. It enables replicas to exchange just the
updated units instead of the entire document each time. Moreover,
sophisticated “diff-exchange” protocols can be avoided because the
exchanged elements are already small.

Unfortunately, current work on fidelity-aware replication do not
support the adaptation of text content. CoFi [4] and Polyjuz [17]
work on componentized data that have strict and static structure.
XML elements at the granularity we have identified are fluid—they
are likely to be moved around—and dynamic—new elements may
be created and current elements deleted at any time. The remain-
der of this section shows how Docx2Go handles replication at the
granularity of elements.

3.2 Docx2Go basics
Docx2Go internally represents a document as an ordered collec-

tion of elements. When a document’s content is adapted to create
a partial document, the elements in the partial document follow the
same relative order as in the parent document. Once the partial
document is on a user’s device, the user can change the order of the
document elements through normal editing.

Docx2Go supports four types of editing operations, all performed
at the element level: insert adds a new element at a specific loca-
tion in the relative order; delete removes a specified element; update
changes the internal contents of an element; and move changes the
relative order of a specified element with respect to other elements.
We use the term update liberally to represent any of the above op-
erations, except in places where distinction is required.

Docx2Go draws upon basic techniques from weakly consistent
replication to track updates and identify conflicts [16]. Each el-
ement has a unique element identifier and a version number. A
replica issues a new version number upon each operation. This
version number consists of the unique replica identifier of the up-
dating replica and the replica’s update counter, which the replica

increments after each update. Each element also has a version vec-
tor that represents its made-with knowledge used to detect conflicts.
The version vector is simply a list, with one update counter per each
replica, indicating the last update performed on that replica for this
element. Two different versions of the same element conflict if the
made-with knowledge of these two versions are disjoint. Docx2Go
adds these replication metadata fields as new attributes to the XML
element.

Replicas exchange updated elements through a synchronization
process. The synchronization process might be invoked manually,
or opportunistically whenever two replicas come in network prox-
imity, or through a specific periodic pattern. Our framework does
not impose any restrictions on how synchronizations are initiated.
The replicas adhere to the following standard synchronization pro-
tocol: A target replica, which is the receiver of updates, sends the
source replica a summary of the updates it already knows about.
The source uses this summary to identify the updated elements that
the target needs and sends them to the target.

Docx2Go also supports a less efficient alternative to facilitate
manual synchronization. The source just sends its entire document
to the target along with the replication metadata. The target then
invokes Docx2Go locally to merge the received document with the
local copy and produce an updated document. This alternative syn-
chronization mechanism is useful when the document is transported
via e-mail or copied from a thumb drive.

Three questions remain to be answered: 1) How does Docx2Go
deal with changes in the relative order of the elements? 2) How
does it handle each of the different operations and merge conflicts
between them? And, 3) what can be done to redress the overhead
imposed by the replication metadata? The remainder of this section
describes how Docx2Go addresses these questions.

3.3 Order consistency
Docx2Go needs to ensure that the elements in all replicas of a

document have a consistent order. The following scenario illus-
trates the problem: Let replica S have an initial copy of the doc-
ument consisting of four elements, Ea, Eb, Ec, and Ed, and let
replica T have a partial version of the same document that consists
of two elements, Ea and Ed. Now suppose that replica S inserts a
new element Ex between Eb and Ec. When replica T later receives
the element Ex from S, how does T know where to position Ex in
its copy of the document?

To date, collaborative editing research has produced two princi-
pled approaches to solving this problem. One approach is called
Operational Transforms (or OT): OT associates a numerical posi-
tion index with each operation based on the position where the op-
eration was performed on the local state of a replica. Later, a remote
replica transforms the operation’s position index into a new index—
appropriate for the remote replica’s state of the document—through
a complex algebra of transformation operations [7, 14]. However,
OT requires that each replica ultimately receive all operations in the
replicated system and thereby excludes efficient partial document
editing.

The alternative approach for maintaining order consistency is
based on Concurrent Replicated Data Types (or CRDT). CRDT
associates with each element an extensible position indicator that
is persistent across all replicas [12, 18]; that is, unlike the OT ap-
proach, CRDT does not require that the position indicators be trans-
formed on different replicas. Docx2Go adopts the CRDT approach
for maintaining order consistency, extending it to support partial
document editing efficiently.

Order consistency maintenance in Docx2Go works as follows.
Each element has an additional metadata attribute called the posi-

349



<w:Head name=“Example” >
<w:P  id=Ea pos=1A > introduction </w:P>
<w:P  id=Eb pos=2A > design </w:P>
<w:P  id=Ex pos=2A.1A > experiments </w:P>

<w:P  id=Ey pos=2A.2A > implications </w:P>
<w:P  id=Ec pos=3A > related work </w:P>
<w:P  id=Ed pos=4A > conclusions </w:P>

</w:Head>
<Head/>

<w:Head name=“Example” >
<w:P  id=Ea pos=1A > introduction </w:P>

<w:P  id=Ex pos=2A.1A > experiments </w:P>
<w:P  id=Ez pos=2A.1A.1B > setup </w:P>
<w:P  id=Ey pos=2A.2A > implications </w:P>

<w:P  id=Ed pos=4A > conclusions </w:P>
<w:Head />
<Head/>

❶

❶

❷

❷ ❸

Alice’s document Bob’s document

Figure 3: Position indicators (pos) establish a consistent order between document elements. The numbers reflect the order of operations: Steps 1
and 3 are inserts, and step 2 is a synchronization.

tion indicator, which determines the element’s position in the doc-
ument relative to its surrounding elements. Therefore, a consistent
order for any partial or complete set of elements can be obtained
by merely sorting the elements using the position indicator as the
key. In the previous example, the document at S has the position
indicators 1, 2, 3, and 4 for elements Ea, Eb, Ec, and Ed respec-
tively. The same position indicators 1 and 4 for Ea and Ed appear
in the partial document at T . Now, when S inserts Ex between
Eb and Ec, Ex gets a new position indicator 2.1, which lies in the
middle of Eb’s and Ec’s position indicators. This position assign-
ment enables S to send to T just the updated element; its embedded
position indicator determines the correct order of Ex in T ’s copy.

The position indicator is extensible and variable in length. For
instance, if S had to insert another new paragraph Ey between Ex

and Ec, Ey would get the position 2.2; a subsequent insert of Ez

between Ex and Ey will result in the position 2.1.1. In this fash-
ion, two position indicators can spawn a new position indicator that
lies in the middle. Although a position indicator could ultimately
grow to be intractably large, previous evaluations have shown that
such growth requires peculiar, worst case insert patterns that rarely
occur [12, 18].

We now formalize the position indicator generation process in
Docx2Go. A position indicator consists of a concatenated sequence
of position units, where each position unit is a tuple consisting of
a sequence number and a replica identifier. The replica identifier
is used to break ties while ordering two position units and helps
Docx2Go to handle concurrent editing scenarios, for example when
two or more replicas concurrently insert a new paragraph each be-
tween the same two paragraphs (thereby generating the same se-
quence number). The following operations on position indicators
control the ordering process: compare, dense, extend and generate.
To describe these, we define a term called corresponding pair to
denote a pair of position units that appear in the same place on two
different position indicators.

The compare operation computes the relative order of two po-
sition indicators, p1 and p2. It works as follows. p1 and p2 are
equal if every corresponding pair in p1 and p2 is equal. Otherwise,
the position units of p1 and p2 are compared in sequence until an
unequal corresponding pair is found. The final result is the value
obtained from comparing the unequal corresponding pair.

The dense operation determines whether two position units are
sequential with no intermittent space between them; that is, the se-
quence numbers are equal or differ by one. This operation supports
the generate operation.

The extend operation extends a position indicator with additional
position units so that it may have a desired number of position units

without changing the position it indicates. The extension is done by
concatenating the required number of position units, each with se-
quence number 0 and a special replica identifier ⊥. This operation
also supports the generate operation.

The generate operation computes a new position indicator that
lies in between two position indicators, p1 and p2. It works by first
extending the position indicators using the extend operation so that
they have the same number of position units. Then it traverses the
corresponding pairs of position units in sequence until it finds an
unequal pair. If the unequal pair is not dense, it creates a new po-
sition unit with a sequence number in between that of the unequal
pair and the current replica’s identifier, and appends it to the previ-
ously traversed position units. If the unequal pair is dense, it creates
a new position unit with the sequence number one and the current
replica’s identifier. It then appends the smaller of the two unequal
position units to the previously traversed position units, followed
by the newly created position unit.

Figure 3 shows how Docx2Go would assign position indicators
in the example scenario. Initially Alice’s full document has four
elements (Ea, Eb, Ec, and Ed) and Bob’s partial document has
two elements (Ea and Ed). In Step 1, Alice adds two elements Ex

and Ey in between Eb and Ec and synchronizes with Bob in Step
2. Bob inserts a new element Ez between Ex and Ey in Step 3.

This position generation process works for full document replica-
tion. However, complications arise when replicas have only a par-
tial local copy. For instance in the example shown in Figure 3, if the
user (Bob) on replica T moves element Ez to someplace between
Ea and Ex, what should the element’s new position indicator be?
Answering this question correctly requires knowledge of the user’s
intention. The user could have intended to insert the paragraph ei-
ther immediately after Ea, immediately before Ex, or in a specific
place in the middle.

Docx2Go resolves this problem by keeping a skeleton structure
of the complete document, regardless of whether it is full or partial.
It maintains the element identifier and position indicator for each
element in a data structure called order metadata, and synchronizes
the order metadata along with the document. Figure 4 illustrates
how the order metadata, shown as OM, helps Bob’s replica T move
the element Ez in front of the element Ex. With the help of the
order metadata, a collaboration-aware editing tool can visually dis-
play the missing portions in the document to the user, enabling the
user to specify the intended location of the new element. Alter-
natively, the editing tool (collaboration-aware or not) can stick to
a default policy about where the new element goes (immediately
before or immediately after the closest boundary element) and use
information in the order metadata to derive the position indicator.

350



<w:Head name=“Example”>
<w:P  id=Ea pos=1A > introduction</w:P>
<docx2go:OM  id=Eb pos=2A />
<w:P  id=Ez pos=2A.0⊥.1B > setup</w:P>
<w:P  id=Ex pos=2A.1A > experiments</w:P>
<w:P  id=Ez pos=2A.1A.1B > setup</w:P>
<w:P  id=Ey pos=2A.2A > implications</w:P>
<docx2go:OM  id=Ec pos=3A />
<w:P  id=Ed pos=4A > conclusions</w:P>

</w:Head>
<Head/>

❹

Bob’s document

Figure 4: Illustrates a move operation (step 4) on Bob’s partial doc-
ument. The order metadata (OM) skeleton structure helps Docx2Go
determine the new position.

3.4 Edit operations and conflict management
Docx2Go executes user-initiated operations as follows: For an

insert, Docx2Go creates replication metadata for the element con-
sisting of a new element identifier, version number, position indica-
tor, and an empty made-with knowledge. For an update, it assigns a
new version number and adds the old version number to the made-
with knowledge. A move operation is similar to an update, but also
sets the position indicator to correspond to the new position.

Docx2Go handles a delete operation in a special manner. Al-
though it removes the contents of the element, it does not immedi-
ately remove the element itself from the document. Instead, it keeps
a record of the delete operation in the form of a tombstone so that
other replicas can learn about the delete operation. The tombstone
is thus a regular document element that appears in the same position
as the deleted element. It consists of the replication metadata (with
a new version number and updated made-with knowledge) and an
additional “deleted” attribute indicating that the element has been
deleted. Docx2Go garbage-collects tombstones through a standard
protocol used in weakly consisted replication systems [11].

In addition to the above operations, Docx2Go provides a merge
operation to resolve concurrent edits (conflicts). The merge opera-
tion takes multiple, conflicting versions of an element and produces
a new, merged version. Docx2Go assigns a new version number to
this element, combines the made-with knowledge of the conflicting
versions, and adds the conflicting version numbers to the made-
with knowledge. The content and position indicator for this merged
version is supplied by the user or the editing tool.

Docx2Go supports delayed conflict resolution. It provides two
properties for managing conflicts: a) all concurrent operations to
the same element will be detected; b) the effects of conflicting
operations will be retained until explicitly merged. That is, repli-
cas retain conflicting versions of an element and synchronize them
all with other replicas that are interested in that element. A user
can then invoke an appropriate merge operation after inspecting the
concurrent changes. User-mediated conflict resolution is consistent
with the common scenario in which documents have a lead author
who is responsible for viewing and merging conflicts. Docx2Go
ensures conflicting versions will eventually appear on the lead au-
thor’s replica, enabling her to resolve them.

Alternatively, a collaboration-aware editing tool can resolve con-
flicts automatically based on policies specified by the user. The fol-
lowing is an example set of policies, which a collaboration-aware
editing tool can employ to highlight conflicts to the user or resolve
them automatically. We describe them on a case by case basis.

Insert. An insert operation cannot conflict with any other opera-
tion since by definition an insert causally precedes a delete, move,
or an update.

Delete. Delete-delete conflicts are idempotent (they both result
in the same effect of removing the element); therefore, merging
them is trivial. For delete-update or delete-move conflicts, the edit-
ing tool can either automatically resolve the conflict in favor of the
delete or the update. Alternatively, it can highlight the conflict to
the user through a visual cue such as a strike through [1].

Update and move. Users can specify which co-author’s up-
date operations take precedence over another’s, and thereby enable
automated conflict resolution. In fact, a few collaborative editing
systems [7, 15] impose this policy by default. In many cases, how-
ever, users may want to make a case-by-case decision. For conflicts
that do not involve moves, conflicting versions of an element would
appear sequentially in the document—enabling easy visualization,
perhaps through background coloring.

3.5 Metadata compaction
Docx2Go assigns replication metadata to each element for con-

flict detection. The relative size of this metadata may be consid-
erable compared to the contents of the element, especially when
the application divides the document at a fine granularity. Among
the constituents of the replication metadata, the made-with knowl-
edge, being composed of a version vector, has a size proportional
to the number of replicas in the system. Per-element made-with
knowledge imposes a considerable overhead even with a moderate
number of authors and modest document size.

Recent advances in weakly consistent replication systems help us
reduce the overall size of made-with knowledge. A few full replica-
tion systems [10, 11] employ a compaction protocol, which reduces
made-with knowledge to a single entry that applies to all items in
a replica instead of a separate made-with knowledge for each item.
Our recent work called Cimbiosys [13] showed how to extend this
property called knowledge singularity to a partial replication system
without sacrificing eventual consistency.

We observe that our approach to support collaborative editing
of a partial document is equivalent to Cimbiosys’ replication of a
partial collection. Each element in the document can be viewed as
an independent Cimbiosys item while a Docx2Go replica with a
partial document is equivalent to a Cimbiosys partial replica, which
replicates only a subset of items in the collection.

Docx2Go reduces metadata overhead by adopting Cimbiosys’
techniques for knowledge compaction. In stable state, it keeps one
made-with knowledge, consisting of a single version vector, for the
whole document. At any particular moment, elements with unsyn-
chronized updates and unresolved conflicts might have individual
made-with knowledge. Compaction ensues as the replicas synchro-
nize with each other, exchange updates, and resolve conflicts.

4. IMPLEMENTATION
We have implemented the Docx2Go framework as a layer on top

of the Cimbiosys replication platform. Docx2Go, in turn, provides
developers with an interface for building collaborative document
editing applications. We present an example of such an applica-
tion, CimWiki, at the end of this section. But first, we describe
three important aspects of our Docx2Go implementation: 1) how
Docx2Go interacts with Cimbiosys, 2) metadata management, and
3) Docx2Go’s application interface.

Cimbiosys provides Docx2Go with replication functionality, so
copies of a document can be edited on multiple devices and syn-
chronized opportunistically. Updates to each copy propagate to the

351



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0  50  100  150  200

S
iz

e 
in

 M
B

s

Document # (Sorted by Size)

Document Size
Text Size

Figure 5: The distribution of the size of text content in a Wikipedia
page compared to its total size.

other devices in the system; eventually all of the copies are up-to-
date and consistent. When Cimbiosys detects concurrent updates to
the document, it notifies the Docx2Go layer so that it can merge the
updates appropriately.

Docx2Go acts as an intermediary between Cimbiosys and the
document editing application. In this role, it performs three kinds of
operations. First, it decomposes the XML document that it receives
from the application into its constituent elements so that Cimbiosys
can replicate the document on each device as a collection of items.
Second, it detects local edits to the document and inserts, updates,
and deletes the appropriate elements within Cimbiosys. Finally, it
takes the changes that Cimbiosys receives during a synchronization
and reconstructs the updated document for the application.

Document decomposition. A depth parameter specifies the level
of the XML hierarchy to be used in the decomposition operation.
Docx2Go treats each distinct element at that depth (or less) in the
XML hierarchy as an independent item for replication. Cimbiosys
assigns a unique identifier and replication metadata to each item.

Change detection. Docx2Go uses Microsoft’s XMLDiffPatch
library2 to detect changes in the document by comparing the appli-
cation’s updated version of the document with a shadow copy that
Docx2Go maintains. It then registers the changes it has detected
with Cimbiosys and updates the shadow copy to reflect the docu-
ment’s current state.

Document reconstruction. To reconstruct the document from
its constituent items, Docx2Go maintains the order metadata de-
scribed in Section 3. The order metadata (an element identifier and
its position indicator) is stored and replicated as a separate Cim-
biosys item. Note that concurrent edits to the document—even to
unrelated portions—could lead to concurrent updates to the order
metadata. Cimbiosys detects and notifies Docx2Go of order meta-
data conflicts; Docx2Go resolves the conflict automatically by sim-
ply combining the conflicting metadata. For conflicting updates
to document elements, the current implementation of Docx2Go in-
cludes all concurrent updates in the reconstructed document, which
it sends to the application.

CIMWiki application
CIMWiki is a sample Docx2Go application for collaboratively edit-
ing pages downloaded from Wikipedia. Wikipedia pages are HTML
documents, and as such, fit easily within Docx2Go’s XML editing
paradigm. Thus CIMWiki is a good application for evaluating the
performance of Docx2Go and the efficacy of our approach.

All Wikipedia pages have a straightforward hierarchical struc-
ture. At the first level is an element called “bodyContent”; at the
2http://msdn.microsoft.com/en-us/library/
aa302294.aspx

 0

 1

 2

 3

 4

 5

 0  100  200  300  400  500

S
iz

e 
in

 M
B

s

Document # (Sorted by Size)

Document Size
Text Size

Figure 6: The distribution of the size of text content in a Word 2007
(docx) document compared to its total size.

next level are standard HTML elements such as “div,” “h1”, “ta-
ble”, “p”, and “ul.” Although Wikipedia pages may have additional
structure embedded in bodyContent’s immediate children (for ex-
ample, a paragraph may contain an embedded table, or a table cell
may contain a paragraph of text), we only consider this coarse level
of structure–bodyContent and its immediate children–and do not
use any more detailed HTML document structure. Thus, when a
Wikipedia page is edited in the CIMWiki application, each direct
child of bodyContent constitutes a separate item in the Docx2Go
framework.

CIMWiki performs content adaptation at the coarse granularity
of sections, where a section may consist of multiple HTML ele-
ments. Sections are the conventional way of dividing a Wikipedia
article into major topics; each section generally has its own heading
so a long page may be navigated easily. For example, a politician’s
biographical page may include sections headed "Early life" and
"Political career." By adapting content this way, CIMWiki allows
a long, complicated Wikipedia article to broken into more tractable
units of sections and edited in coherent chunks.

Because Wikipedia articles are typically broken into sections this
way, it is fairly straightforward to parse a Wikipedia page using
heuristics. For example, an HTML H2 header tag followed by a
SPAN element usually signals the presence of a section name (e.g.
“<h2><span ...>Early life</span></h2>” tells us that there is a sec-
tion titled “Early life”). We can then assume that the material be-
tween one section heading and the next corresponds to the section’s
content. CIMWiki uses patterns of this sort to identify sections and
number sections; this parsed version of the HTML document is then
passed on to Docx2Go.

CIMWiki uses the content-filtering feature of Cimbiosys to en-
sure that the appropriate sections of the Wikipedia document are
replicated on each device during the synchronization process. In
other words, CIMWiki sets a replica’s filter to accept the explicit
set of sections that the user wants to edit on the local device.

5. EVALUATION
We evaluate Docx2Go using the CIMWiki application for editing

Wikipedia pages. Wikipedia is a natural candidate for our evalua-
tion because it provides a large readily available dataset of collab-
oratively edited documents along with their revision histories. This
section focuses on two topics. First, we analyze the characteristics
of the Wikipedia workload and discuss their implications for collab-
orative editing. Next, we present the results of running Docx2Go
on this derived workload.

5.1 Analysis of Wikipedia content
We downloaded the complete revision history of 600 Wikipedia

pages using Wikipedia’s API. We collected these pages using a

352



 0

 20

 40

 60

 80

 100

 0  5  10  15  20

%
 o

f R
ev

is
io

ns
 (C

D
F)

% of Elements Updated Per Revision

All Updates
Updates + Inserts + Deletes

Figure 7: Distribution of the number of elements updated in one revi-
sion of a Wikipedia page.

breadth-first search crawler initiated with a few root pages. The
root pages included Wikipedia’s Main Page and popular pages such
as ‘Baseball’, ‘Harry Potter’, and ‘University of California’. At
least 220 out of the 600 pages had a history of 500 revisions, the
maximum number of revisions that Wikipedia’s API allows us to
download. The remaining pages had 60 to 500 revisions.

Text vs media in documents
We first examined our dataset to understand the contribution of tex-
tual content to the total size of the document. Large documents that
predominantly consist of text are likely to benefit more from text
content adaptation than documents whose text component is small.

Figure 5 compares the quantity of text in a Wikipedia page with
the total size of the page. For easy visualization, the figure plots
the distribution in increasing page size order. The shaded areas in
the figure illustrate the quantity of text in the pages. In general,
the relative proportion of text in a Wikipedia page decreases as the
page size increases. Yet many large pages still appear to contain a
significant amount of text. Overall, the 220 Wikipedia pages had a
total size of 81 MB, with 42 MB of text.

We also examined the text to document size ratio for Word 2007
(“docx”) documents. We downloaded a sample of 500 Word docu-
ments from the Web by searching in Google for keywords ‘mobile
computing,’ ‘introduction,’ ‘documentation,’ ‘how to,’ and ‘tuto-
rial,’ with “filetype:docx.” We selected the top 100 documents from
each set of search results and examined their relative text content.

Figure 6 displays the quantity of text in our sample Word docu-
ments relative to their total size. The results are similar in quality to
those revealed by our analysis of the collection of Wikipedia pages,
although the Word documents we analyzed tend to be larger than
Wikipedia pages. Small Word documents (less than 0.5 MB) are
mostly text. Even though the relative amount of text decreases in
larger documents, there are still many large documents with a sig-
nificant quantity of text. Together, the 500 Word documents had a
total size of 450 MB, of which 210 MB was text. Of these, about 70
documents had greater than 0.5 MB of text, and about 30 of them
contained over 1 MB of text. Thus, mobile editing applications will
benefit from text-based content adaptation.

Characteristics of Wikipedia workload
We next present the characteristics of Wikipedia workload that are
relevant to the design of a collaborative editing system. In particu-
lar, we examine: 1) the number of elements in a typical Wikipedia
page, 2) the number of elements updated in a typical revision of a
page, and 3) the number of authors that revise a page and the num-
ber of revisions they perform on it. For the purpose of this analysis,
the page elements consist of those we identified in our description
of the CIMWiki application.

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

C
D

F

# of Revisions to the Page

All Authors
Non-anonymous Authors

Figure 8: Distribution of the number of revisions contributed by a
single author.

Number of elements in a page. The number of elements in
the Wikipedia pages in our dataset varied from 7 to 359. The aver-
age number of elements per page was about 127, while over 75%
of the pages had more than 81 elements. This result suggests that
Docx2Go needs to deal with only a moderate number of elements
(hundreds) for replication and conflict management. Other collab-
orative editors that work with smaller units [7, 12, 15, 18] (words
or characters) will face an overhead several-fold higher.

Number of elements updated per revision.
We applied the XMLDiff tool to compare consecutive revisions

of a Wikipedia page. That is, we computed the difference between
the 1st and the 2nd revisions, the 2nd and the 3rd revisions, and
so on until the 499th and 500th revision. We define two metrics
to quantify the changes reported by XMLDiff: The number of el-
ements updated counts each changed element present in both of
the compared revisions. The number of elements touched adds the
number of new elements and the number of deleted elements to the
number of elements updated.

Figure 7 shows the distribution of the metrics. The figure reveals
that during most revisions, only a small percentage of the elements
are updated. In nearly 77% of the revisions, fewer than 5% of the el-
ements are updated. Even when we add the number of inserted and
deleted elements, 72% of revisions affect fewer than 5% of the ele-
ments. Overall, the number of elements inserted or deleted is quite
small compared with the number of updates to existing elements.
In the Wikipedia dataset, we found a total of 521,454 updates, but
only 50,657 inserts and 53,430 deletes.

These results corroborate two observations we made earlier in
the paper. First, synchronizing only updated elements instead of the
entire document will reduce bandwidth consumption substantially.
Second, supporting update as a full-fledged operation is beneficial
because it provides the required context to understand collaborative
edits to elements. By contrast, many collaborative editing systems
break an update into an independent insert and a delete, retaining
all concurrently inserted elements instead of flagging them as con-
flicts [7, 12, 15, 18]. This approach may cause more confusion
when there are a large number of updates.

Number of authors per page.
We counted the number of unique authors that revise a page using

the username field. We found that a typical page has many authors.
There were at least 86 authors for each page in our trace, the aver-
age being about 249 authors per page. Even after we eliminated the
anonymous authors (authors whose IP address appears on the pages
instead of their username), a minimum of 58 authors, and an aver-
age of 129 authors, edited each page. Clearly, many authors revise
each popular page, suggesting that the pages undergo a significant
amount of collaborative editing.

353



 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50

ONE

THREE

FIVE

FULL

# 
of

 E
le

m
en

ts
 U

pd
at

ed

Revision #

Author Replica
Elements Updated

Figure 9: Wikipedia workload. The authoring replica and the number
of elements affected for each revision.

We further examined the number of revisions each author con-
tributed to a page. Figure 8 plots the number of revisions that each
author made to a page in our dataset. It shows that most authors
only make a small number of revisions, and only a few revise the
page frequently. Nearly 70% of the authors revised a page just once,
whether or not we include the anonymous authors. About 2% of the
authors revised the same page more than 10 times during the entire
history of 500 revisions. About 36.5% of the total revisions were
performed by anonymous authors, but the distribution of the num-
ber of revisions remains nearly the same as when these anonymous
revisions are ignored.

This revision pattern implies that Docx2Go will need to scale to
at least a few hundred users so it can handle the workload intro-
duced by a major collaborative endeavor like Wikipedia. In such
cases, knowledge compaction is essential to ensure that the replica-
tion metadata overhead does not become unduly large.

5.2 Evaluation of Docx2Go
We evaluated Docx2Go using a workload derived from the Wiki-

pedia dataset. The evaluation was designed to answer the following
questions:

• Does Docx2Go achieve eventual convergence in the presence
of concurrent edits?

• How much does text-based content adaptation reduce band-
width and latency?

• How much overhead does Docx2Go metadata entail, and how
effective is knowledge compaction in reducing this overhead?

Setup
We set up a system with four replicas, each running the CIMWiki
Docx2Go application and collaboratively editing a Wikipedia docu-
ment. We selected the ‘Harry Potter’ Wikipedia page, including its
history of 500 revisions, as the candidate document for the evalua-
tion. Our experiments with this candidate document provide quali-
tative answers to the evaluation questions. A precise quantification
of the actual convergence time and the bandwidth saved depends on
several variables such as the size of the document, the size of the
adapted portions, the frequency and number of elements edited, and
the efficiency of the network protocol. This simulated workload is
sufficient to give us a sense of the efficacy of our approach and its
potential benefits when it is used in a range of real-world situations.

The replicas each had different levels of text-based content adap-
tation. One replica called full included all of the sections in the
document. The other three consisted of the first one, three and five
sections respectively. Note that a section of the document usually
spans multiple elements. Replicas full and one represent two ex-
tremes of content adaptation—full selects all the elements in the

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50  60  70

# 
of

 E
le

m
en

ts
 S

yn
ce

d

Time

Revisions End

Figure 10: Eventual convergence in the presence of concurrent edits
and peer-to-peer synchronization. Each time interval represents one
revision and one synchronization.

document (with ten sections total) and one selects only the few el-
ements that constitute the first section. The remaining replicas rep-
resent intermediate adaptation levels.

The experiments used the two different synchronization topolo-
gies described below.

Master-slave setup. In the master-slave setup, all revisions to the
document were played at a special master replica with full content
adaptation level. It replayed revisions of the candidate document
starting from version 1 until version 500 in the document’s revision
history. The other four replicas synchronized with the master pe-
riodically to fetch updates; the replicas did not synchronize among
themselves. The replicas were timed to synchronize once after ev-
ery revision played by the master. This master-slave setup helped us
measure the impact of text-based content adaptation on the amount
of data transferred, the latency of synchronization, and the advan-
tage of knowledge compaction.

Peer-to-Peer setup. This setup was based on the scenario de-
scribed in Section 2 and included peer-to-peer synchronization and
concurrent changes. In this setup, there is no master replica; the
four replicas in the system replayed the revisions directly to the
candidate Wikipedia page. For each revision in the page’s revision
history, we picked the replica at the lowest adaptation level that in-
cluded all sections affected by the changes in the revision as the
author for that revision. For instance, if only the first section was
changed in a revision, then we chose replica one as the author for
replaying that revision. For each revision replayed, we also set up
a synchronization between two randomly selected replicas.

Document convergence
We ran an experiment using the peer-to-peer setup but with all repli-
cas hosted on the same computer. We replayed 50 consecutive revi-
sions of the candidate page at replicas with suitable adaptation level,
as described earlier. After the 50th revision was replayed, we con-
tinued to invoke synchronizations between randomly chosen pairs
of replicas, in order to enable the system to converge.

Figure 9 illustrates the editing operations that occur in this ex-
periment. This figure shows two things for each time unit of one
revision: the replica at which the revision was performed and the
number of elements affected by that revision. It shows that all repli-
cas performed revisions in our workload each at a different content
adaptation level: 30 revisions at full, 6 revisions at five, 6 at three,
and 8 revisions at one.

Figure 10 shows the number of elements exchanged when two
replicas synchronize with each other. It shows that when replicas
were replaying updates in the system, a few elements were trans-
ferred during a synchronization. This data transfer continues for
some time even after the revisions are stopped at time interval 50.

354



  0

  5

  10

  15

  20

  25

  30

W
−O

N
E

W
−F

U
LL

W
−F

FI
LE

3G
−O

N
E

3G
−F

U
LL

3G
−F

FI
LE

S
yn

c 
La

te
nc

y 
(in

 S
ec

s)

Figure 11: Average synchronization latency for wired and 3G Internet
connections experienced by replicas at content adaptation level one and
full, and a strawman replica that synchronizes complete files.

However, the system quickly converges by time interval 60 (there
are no data transfers beyond this point). We verified that the el-
ements and their order in the document were consistent on all the
replicas at the end of the test and matched the state of the Wikipedia
page in the revision history.

Impact of content adaptation
We used two metrics to evaluate the benefits of text-based content
adaptation: 1) the latency experienced by a user downloading (syn-
chronizing) updates from the master and 2) the total amount of data
transferred over the network during synchronization.

Latency measurements on mobile broadband.
We set up a master replica in Santa Barbara, CA and the slaves

on a laptop in San Francisco, CA. The slaves synchronized period-
ically with the master, while the master was replayed 50 revisions
of the candidate Wikipedia page. We ran this experiment in two
modes: first, by connecting the laptop to a wired network and sec-
ond, by using Sprint’s 3G Mobile Broadband network (via a laptop
connect card).

Figure 11 shows the average synchronization latency in these ex-
periments for full and one. In addition, we also measured the la-
tency for a scenario called ffile, in which the replicas downloaded
the entire document from the master during each synchronization.

For both the wired and the 3G network experiments, the down-
load latency increased from one to full to ffile. This trend is ex-
pected because there was a corresponding increase in the amount
of data downloaded; one only fetched updates to elements in the
first section, full fetched updates to all elements, and ffile fetched
all elements, regardless of whether they had been changed or not.

The more important trend, however, appears between the wired
and the 3G network latencies. The synchronization latency in-
creases from barely noticeable, a few seconds in the wired network,
to between fifteen and thirty seconds in the 3G network. The im-
provement in latency due to text-based content adaptation is there-
fore more pronounced for the 3G network. For bigger documents
and in areas with spotty broadband coverage, the latency may im-
prove substantially.

Bandwidth measurements.
Figure 12 shows the total amount of data transferred between

replicas during synchronization. It confirms the expected trend that
the amount of data transferred decreases with more selective con-
tent adaptation. In this experiment, the replica at level one received
nearly 8 times less data compared to the replica at level full. Other
replicas with an intermediate content adaptation level have a pro-
portional decrease in bandwidth consumption as well.

Wikipedia Data
Replication Metadata
Order Metadata

  0

  2

  4

  6

  8

  10

  12

ONE THREE FIVE FULLTo
ta

l B
yt

es
 T

ra
ns

fe
rr

ed
 (i

n 
M

B
s)

Replica

Figure 12: Bandwidth consumption for transferring data, order meta-
data, and replication metadata to replicas with different content adap-
tation levels.

Metadata overhead
Figure 12 also plots the total metadata overhead broken down into
replication metadata and order metadata. The replication metadata
is proportional to the content adaptation level since it depends on
the number of elements. By contrast, the order metadata imposes
a constant overhead across all replicas, since it carries the same
skeleton document structure for every replica. In comparison to the
amount of data transferred, the metadata overhead is relatively high
for replicas with selected content (one and three) but quite low for
more complete replicas (full and five).

Finally, to investigate the benefit of metadata compaction, we ran
an experiment with compaction disabled. In this experiment, the
master revised the page 250 times, once per interval, and the slaves
synchronized with the master, again once per interval. We measured
the amount of replication metadata transferred to the slaves during
synchronization and plotted it for the full replica.

Figure 13 shows how replication metadata grows over time in this
setup, with and without compaction. Under the condition without
compaction, the size of the replication metadata increases with the
number of revisions; initially it grows very quickly, and eventually
converges. Under the other condition, with compaction, the repli-
cation metadata remains roughly the same size. At the end of our
test, the size of the replication metadata remained below 1KB with
compaction enabled, but grew to nearly 1MB without compaction.
Thus compaction helps in keeping the metadata overhead low.

6. CONCLUSION
Supporting editing on the go requires a close look at complex

real-world situations. In an era of near-ubiquitous connectivity,
simply storing the shared document on a server and editing it in
place diminishes the possibility of conflicting edits, out-of-date copies,
or platform incompatibilities. But many examples of breakdowns in
this approach are readily identified, especially when we factor in the
great diversity of mobile device capabilities, and the less than per-
fect network connectivity users invariably experience when they are
away from their usual workplaces. Editing a local copy of a docu-
ment using the mobile devices and network capacity at hand is often
more convenient and flexible than relying on a centralized reposi-
tory and continuous access to coordinate synchronous changes.

Docx2Go is a framework for editing XML documents in this type
of heterogeneous mobile environment. Docx2Go uses XML’s fine-
grained representation of document structure as a linchpin for its
specific innovations that draw on techniques from weakly consis-
tent replication, content adaptation, and collaborative editing. First,
this representation is used as a basis for promoting the efficient syn-

355



 0.1

 1

 10

 100

 1000

 50  100  150  200  250R
ep

lic
at

io
n 

M
et

ad
at

a 
O

ve
rh

ea
d 

 in
 K

B
s 

(L
og

 S
ca

le
)

Time

No Compaction
With Compaction

Figure 13: Growth of replication metadata with and without com-
paction.

chronization of independent local copies of a document. It also
enables the system to support textual content adaptation—the abil-
ity to reduce document resolution to match device and network
affordances—to improve users’ mobile editing experience. Finally,
Docx2Go resolves conflicts between different devices’ independent
editing operations using a method of identifying and ordering the
XML elements. By bringing together these three techniques under
the umbrella of a common document representation, we have been
able to address the complex requirements of editing on the go.

Thus far we have implemented and evaluated the performance
of the general framework described in this paper. Our future work
includes extending the Docx2Go framework by developing appli-
cations to handle other types of XML documents, specifically those
produced by Microsoft Office tools such as Word, PowerPoint, and
Excel. In the scenarios, examples, and evaluation presented in this
paper, we have focused on familiar types of XML documents such
as scholarly papers and Wikipedia pages; in future work, we intend
to investigate more diverse application domains such as eScience,
which sometimes rely on large Excel spreadsheets, and may benefit
in new ways from Docx2Go’s flexible content adaptation capabil-
ities. By developing and deploying a range of Docx2Go applica-
tions, we will be able to test the efficacy of our approach using real
documents, networks, devices, and collaborations.

7. REFERENCES
[1] ALSHATTNAWI, S., CANALS, G., AND MOLLI, P.

Concurrency awareness in a p2p wiki system. In Proc. of
International Symposium on Collaborative Technologies and
Systems (CTS) (Irvine, CA, May 2008).

[2] BELARAMANI, N., DAHLIN, M., GAO, L., NAYATE, A.,
VENKATARAMANI, A., YALAGANDULA, P., AND ZHENG,
J. PRACTI replication. In Proc. of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI)
(San Jose, CA, May 2006).

[3] BILA, N., RONDA, T., MOHOMED, I., TRUONG, K. N.,
AND DE LARA, E. PageTailor: Reusable end-user
customization for the mobile web. In Proc. of the ACM
Conference on Mobile Systems, Applications and Services
(MobiSys) (San Juan, Puerto Rico, June 2007).

[4] DE LARA, E., KUMAR, R., WALLACH, D. S., AND
ZWAENEPOEL, W. Collaboration and multimedia authoring
on mobile devices. In Proc. of the ACM Conference on
Mobile Systems, Applications and Services (MobiSys) (San
Francisco, CA, May 2003).

[5] DE LARA, E., WALLACH, D. S., AND ZWAENEPOEL, W.
Puppeteer: Component-based adaptation for mobile
computing. In Proc. of the USENIX Symposium on Internet

Technologies and Systems (USITS) (San Francisco, CA, Mar.
2001).

[6] FOX, A., GRIBBLE, S. D., BREWER, E. A., AND AMIR, E.
Adapting to network and client variability via on-demand
dynamic distillation. In Proc. of the ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (Cambridge, MA, Oct. 1996).

[7] LI, R., AND LI, D. A landmark-based transformation
approach to concurrency control in group editors. In Proc. of
the International ACM Conference on Supporting Group
Work (GROUP) (Sanibel Island, FL, Nov. 2005).

[8] MARSHALL, C. C. From writing and analysis to the
repository: Taking the scholars’ perspective on scholarly
archiving. In Proc. of the ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL) (June 2008).

[9] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D.,
TILTON, J. E., FLINN, J., AND WALKER, K. R. Agile,
application-aware adaptation for mobility. In Proc. of the
ACM Symposium on Operating Systems Principles (SOSP)
(Saint Malo, France, Oct. 1997).

[10] NOVIK, L., HUDIS, I., TERRY, D. B., ANAND, S.,
JHAVERI, V., SHAH, A., AND WU, Y. Peer-to-peer
replication in WinFS. Technical Report MSR-TR-2006-78,
Microsoft Research, June 2006.

[11] PETERSEN, K., SPREITZER, M. J., TERRY, D. B.,
THEIMER, M. M., AND DEMERS, A. J. Flexible update
propagation for weakly consistent replication. In Proc. of the
ACM Symposium on Operating Systems Principles (SOSP)
(Saint Malo, France, Oct. 1997).

[12] PREGUICA, N., MARQUES, J. M., SHAPIRO, M., AND
LETIA, M. A commutative replicated data type for
cooperative editing. In Proc. of International Conference on
Distributed Computing Systems (ICDCS) (Montreal, Canada,
June 2009).

[13] RAMASUBRAMANIAN, V., RODEHEFFER, T. L., TERRY,
D. B., WALRAED-SULLIVAN, M., WOBBER, T.,
MARSHALL, C. C., AND VAHDAT, A. Cimbiosys: A
platform for content-based partial replication. In Proc. of the
USENIX Conference on Networked Systems Design and
Implementation (NSDI) (Boston, MA, Apr. 2009).

[14] SUN, C., AND ELLIS, C. Operational transformation in
real-time group editors: issues, algorithms, and
achievements. In Proc. of the ACM Conference on Computer
Supported Cooperative work (CSCW) (Seattle, WA, Nov.
1998).

[15] SUN, C., JIA, X., ZHANG, Y., YANG, Y., AND CHEN, D.
Achieving convergence, causality preservation, and intention
preservation in real-time cooperative editing systems. ACM
Transactions on Computer-Human Interactions 5, 1 (1998).

[16] TERRY, D. B. Replicated Data Management for Mobile
Computing. Morgan & Claypool Publishers, 2008.

[17] VEERARAGHAVAN, K., RAMASUBRAMANIAN, V.,
RODEHEFFER, T., TERRY, D. B., AND WOBBER, T.
Fidelity-aware replication for mobile devices. In Proc. of the
ACM Conference on Mobile Systems, Applications and
Services (MobiSys) (Krakow, Poland, June 2009).

[18] WEISS, S., URSO, P., AND MOLLI, P. Logoot: A scalable
optimistic replication algorithm for collaborative editing on
p2p networks. In Proc. of International Conference on
Distributed Computing Systems (ICDCS) (Montreal, Canada,
June 2009).

356


