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Abstract—Analysis of large networks is a critical component (BFS) [2]. Similarly, variants such as Dijkstra and Floyd-
of many of today’s application environments, including onine  \Warshall also fail to scale to these network sizes.

social networks, protein interactions in biological netwaks, and Without an efficient alternative for node distance compu-
Internet traffic analysis. The arrival of massive network graphs ithou ICI v ! pu

with hundreds of millions of nodes, eg. social graphs, presents tation, recent work has focused on exploring efficient ap-
a unique challenge to graph analysis applications. Most ofiese proximation algorithms [2], [3], [4]. Our prior work [4],
applications rely on computing distances between node par described the idea @fraph coordinate systemwhich embeds
which for large graphs can take minutes to compute using granh nodes into points on a coordinate system. The regultin
traditional algorithms such as breadth-first-search (BFS) . . . ;
) coordinates can be used to quickly approximate node distanc

In this paper, we study ways to enable scalable graph process ) _p o .
ing for today’'s massive networks. We explore the design spac dueries on the original graph. Our initial system, Orion,
of graph coordinate systems, a new approach that accurately was a centralized system that approximated node distances
approximates node distances in constant time by embedding by mapping nodes to the Euclidean coordinate system [4].
graphs into coordinate spaces. We show that a hyperbolic |t has several limitations in practice. First, Orion’s iait
embedding produces relatively low distortion error, and propose graph embedding process is centralized and computatjonall

Rigel, a hyperbolic graph coordinate system that lends itself to . . L
efficient parallelization across a compute cluster. Rigel pduces €XPensive, which presents a significant performance betle

significantly more accurate results than prior systems, andis for larger graphs. Second, Orion’s results produce err@sra
naturally parallelizable across compute clusters, allowig it to  between 15% and 20%, which limits the types of applications

provide accurate results for graphs up to 43 million nodes. jt can serve. Finally, it is unable to produce actual paths

Finally, we show that Rigel’s functionality can be gasﬂy etended connecting node pairs, which is often necessary for a number
to locate (near-) shortest paths between node pairs. After ane- .
of graph applications.

time preprocessing cost, Rigel answers node-distance ques in
10’s of microseconds, and also produces shortest path ressilup In this work, we seek to extend work graph coordinate
to 18 times faster than prior shortest-path systems with sirifar systemdy developing a practical system that provides signifi-
levels of accuracy. cant improvement in accuracy, scalability, and extended-fu
tionality. We systematically explore decisions in the gasbf
|. INTRODUCTION a graph coordinate system, and make two key observations.
) _ . First, we propose to extend our work on graph coordinate
Fast and scalable analysis of large networks is a Cr't'cﬁlstems, by embedding large graphs in a hyperbolic space
component of many of today’s application environments, i |\yer distance distortion errors. Our embedding akioni
cluding online social r_letworks, biological protein intetian naturally parallelizes the costly embedding process acros
networks, and a_lnaIyS|s of the Interr_let router backb“one. Fr?lﬁltiple servers, allowing our system to quickly embed inult
example, a social game network mlght seqrch for_ centrgliiion node graphsSecongdwe propose a novel way to use
users to help deploy new games, while a social auction §jte oy coordinates to efficiently locate shortest paths &etw
wants to tfall a buyer if a specific item is being guctioned bP(ode pairs. The result of our work Rigel a hyperbolic
someone in her social circles. Ideally,l such queries shbeld graph coordinate system that supports queries for both node
answered quickly, regardless of_the SIz€ c_>f the graph, on EVffistance and shortest paths on today’s large social graphs.
if graphs themselves are changing .over time. ) After a one-time, easily parallelizable, preprocessinggeh
Unfortunately, these goals are simply unattainable for tgyjge| can resolve queries in tens of microseconds, even for
day’s online social networks. This is because numeroushgrap sssive social graphs up to 43 million nodes.
analysis problems such as centrality computation, noda-sep Our paper describes four key contributions
ration, and community detection all rely on the simplede '
distance(length of shortest path) primitive, which scales badly « In Sections Il and 1V, we describe the detailed design
with graph (or network) size. For graphs generated fromadoci ~ of Rigel, and show how we can minimize embedding
networks such as Facebook (700 million nodes), Linkedl®(10  time by effectively parallelizing the most computatioyall
million) and Twitter (200 million), computing the shortexsdth expensive parts of the graph embedding process.
distance between a single pair of nodes can take a minute os We evaluate a distributed prototype of Rigel using social
more using traditional algorithms such as breadth-firatce graphs of different sizes from several OSNs, including



TABLE | y
d’(A,B)=3.1

A VARIETY OF SOCIAL GRAPHS USED IN OUR WORK d(A,B)=3

Graphs Nodes Edges Avg. Path Len. Embedding

Egypt 246K 1,618K 5.0

Norway 293K 5,589K 4.2 X
LA. 275K 2,115K 5.2

gliikr é,gng 15,55§K 51 Eage
rkut 072K 117,185K 41

Livejournal | 5,189K  48,942K 5.4 Shortest Path
Renren 43,197K  1,040,429K 5.0

Fig. 1. An example of graph embedding to an Euclidean spameeXample,
the shortest path distance between nodeand B is 3 in the graph (left),

Facebook, Flickr, Orkut, LiveJournal, and Renren. Otﬂnd the Euclidean distance between their coordinates i¢right).
results show that Rigel achieves consistently improved

accuracy com_p_ared to Orion, and scales to large grap&JSordinate systems, and related work on graph embedding and
of up to 43 million nodes.

. . _ . social networks.
« In Section V, we implement three different social graph

analysis applications on top of the Rigel system. Ou. Background

results illustrate both the accuracy and scalability of the Graph coordinate systems, a concept we first proposed in
R.|ge| system for use in real graph analy5|s_ applicationgyion [4], seek to provide accurate estimates of distances
« Finally, we propose an approach to approximate shortgtween any pair of graph nodes. At a high level, this apgroac
paths for any node pair using graph coordinates. Wyptures the complex structure of a high dimensional graph,
compare Rigel's shortest path results to those from rgnd computes a lossy representation for it in the form of a
cently proposed techniques. Rigel paths provide accuragyed position for each graph node in a coordinate space. Each
similar to the most accurate of prior schemes, whilgode’s coordinate position is chosen such that its distamce
resolving queries up to 18 times faster. another node in the coordinate space matches its real shorte
. path distance to that node in the actual graph. In Figure 1 for
A. Social Network Graph Datasets example, the shortest path distance between neadesd B

Throughout our paper, we use a number of anonymized3 in the graph, and the Euclidean distance between their
social graph datasets gathered from measurements of onbg@rdinate positions is 3.1.

social networks to guide and evaluate our system design.
utilize a total of 7 social graphs, ranging in size from 24,0

nodes and 1.6 million edges, to 43.2 million nodes and i L
Istance query using a small amount of time independentof th

billion edges. We list their key characteristics in Table I. C _ ;
Three of these graphs, Egypt, Los Angeles (LA) and NOg_raph sizej.e. O(1) time. In practice, each query takes only
' X ew microsecondsufs) to compute. This is very attractive

way, are Facebook regional networks shared by the auth rg o . )
of [5]. The remaining four graphs are significantly large or applications that require large numbers of node diganc

graphs crawled from the Flickr, Orkut, LiveJournal, and Reﬁomﬂuéatlon?, sucdh as compl:mg gtrr?p_?-Wlde metrics _I|ke
ren social networks, each with millions of nodes and edgecgap lameter and average path 1ength. 10 process queres o

We use them to test the efficiency and scalability of ot 9'Ven grapfts, however, a GCS must first compute a one-

system. The Livejournal, Flickr and Orkut are datasetsezhar’™® embedding ofz into the coordinate spacee. compute

by the authors of [6]. With 43 million nodes and more thawe coordinate p(_)sitions of eac.h graph node. This initiqb st

1 billion edges, our largest dataset is a snapshot of Renr&f! be computqtmnally EXPENSIVE, andl scales rough-lyrlmea

the largest online social network in China. We obtained thYg't'n graph SIZ€).€. O(n) for a gr"?‘ph withn nodes. F|na!ly,

graph after seeking permission from Renren and the authgrgraph co_ordlnate system prow_des good approximations to

of [7]. While these graphs are still significantly smalleatth graph queries, but does not provide perfect results.

the current user populations of Facebook (600 million) arfdoals. We focus on two goals in our exploration of the GCS

LinkedIn (80 million), we believe our graphs are large erfouglesign space. First, we seek to optimize the graph embedding

to demonstrate the scalability of our mechanisms. to maximize accuracy. Second, since graph embedding is by

far the biggest source of computational cost in a GCS system,

our goal is to ensure that we can take advantage of distdbute
Our goal is to develop a practical system that quicklyomputing resources,g.server clusters, to ensure scalability

answers node distance queries for today’s massive sociglnetwork graphs continue to grow in size.

graphs. To do so, we will use our proposed concept of o )

graph coordinate system@CS), an approach that tolerate®- Work on Embedding in Geometric Spaces

an initial computational overhead in order to provide node- Embedding techniques have been used in a variety of

distances approximations that take constant time regazdie application contexts. The most recent and well-known use

graph size. In this section, we introduce the concept oflgrapf embedding techniques was in the context of network

r%s and Cons. The advantage of using a GCS is that,
ce a graph is embedded, the system can answer each node

II. BACKGROUND AND RELATED WORK



coordinate systems used to estimate Internet latencié®uiit interaction graphs by crawling the Facebook network [Zngi
performing exhaustive end-to-end measurements [8], 19].[ et al. [7] used the same methodology to generate a largel socia
We summarize prior experiences in embedding in geometgraph of 43 million users on Renren, the Chinese Facebook
spaces from both measurement and theoretical studies. clone. Finally, Twitter was analyzed in [26], and other $#sd
Euclidean embedding was first used on simple graphs [1@jpdeled behavior of social network users using networki leve
and was widely used to predict routing latency betweatata measurements [27], [28].
Intern?t hosts [.8]’ [1(?].’ [12], [13]. These systems Ca_mbr‘_’j‘Our focus. We focus on the problem of designing and
nodes’ geometric positions based on Int_ernet round-trige i uilding a real system for analyzing today’s massive nekaor
(RTT). Recent result in [14] proves th.e tightest upper bounﬁs with prior work [14], [29], [19], it is extremely challemag
O(vlognloglogn) for an n-point Euclidean embedding. v, 4y hounds on these probabilistic approaches. Instead
Vivaldi [15] was the first to investigate the accuracy ot

beddi Ki herical Whil hi se a wide range of empirical data to verify that our system
Enm s?)helr?ga?sn;at\\(l:vgsr ism\txeic?eﬁ/puzggainsf):zcrfbuterl Sisr?o%rp[ll rks accurately for network graphs up to tens of millions of
o i . - . ) odes.
there is little theoretical work investigating sphericalocdi-
nate systems.

A hyperbolic space can be thought of a space with a tightly !ll. A HYPERBOLIC GRAPH COORDINATE SYSTEM
connected core, where all paths between nodes pass through. _ _
Experimental systems for embedding Internet distancef [17 A Number of recent projects have shown that hyperbolic
[18], [15] generally showed improved accuracy over analsgoSPaces can more accurately captg_re distances on a network
systems that used Euclidean spaces. grap_h [18], [19], [20]. We also emplrlcglly compute @stort

Kleinberg proposed a routing algorithm in ad hoc networkB€tics [30] on our social graphs for different coordinate-s
that works bygreedy embeddinte network into a hyperbolic tems, and find that the hyperbohc space is in fact S|gn|ﬂ§zant
space, and [19] proposed a similar approach for dynanﬂ},ore accurate_ than Euclidean qnd spherlgal aIternnge. Th
graphs. However, their focus is on smaller graphs of Wimlegesu“s gre om!tted here for b_reV|.ty, but available thBﬂe][
or synthetic networks~50 nodes as in [19]). [20] proposes a N this section, we describ®igel a hyperbolic graph

model using Hyperbolic spaces pooducesynthetic graphs. coordinate system (GCS) for estimating node distance egieri
Before answering queries on a particular graph, the gragt mu

C. Social Network Applications and Studies first be embedded into a hyperbolic coordinate space, a ggoce
gnlat involves computing ideal coordinate values for eaatleno

in the graph. We describe hyperbolic coordinate computatio
in Rigel, present details of Rigel's graph embedding preces
Shortest-path based Applications. Recently, social net- 3nd explore the impact of system parameters on embedding
works have inspired a numerous security protocols and IsoGicuracy. Wherever possible, we compare Rigel's resuits di

applications in a number of fields. In Section V, we Wilkectly to comparable results obtained from running Oriol [4
evaluate our proposed system using three of the most commpp Euclidean GCS.

social analysis applications: graph separation metricaply
centrality, and distance-ranked social search [2], [21]. _ o .
Many other social applications rely on shortest path compﬁ= Distance Computation in the Hyperboloid

tations. For instance, information dissemination [22] ¢&8  There are five known “Hyperbolic models” that have been
node distances to find the most influential nodes. Communfysnosed for different graph structures, including the fHal
detection algorithms [23] can use distance between nodesyigne, the Poincaré disk model, the Jemisphere model, the
cluster them. Algorithms for detecting Sybil attacks rely okjein model and the Hyperboloid model [18]. In designing
strategies similar to community detection [24], and her&® CRige|, we chose theHyperboloid model for two practical
also leverage node distance information. Neighborhood-funeasons. First, computing distances between two points in
tion [25] uses node distance distributions to predict weethihis model is computationally much simpler than alterreativ
two graphs are similar. Finally, users in the Overstockianct odels. Second, the computational complexity of calcodati
site query the social graph to see how they are connectfigiances is independent of the space curvature. This gives
to sellers of a given product [1]. All these applicationsyrelaqgitional flexibility in tuning the structure of the hypeiks
heavily on shortest path computations, and therefore cghace for improved embedding accuracy.

benefit significantly from our system. The curvature parametei(c < 0) is an important parameter
Studies of Online Social Networks. Recently, a number of in the definition of the Hyperbolic space [18]. Wheg- 0, the
large measurement studies have studied the structureioonHyperbolic space reduces to the Euclidean space. The choice
social networks through graph measurement and analysis. Bbc has significant impact on the level of distortion between
example, Mislove et al. published a comprehensive papée real node distances and their images on the Hyperbolic
to analyze data crawled from Flickr, Livejournal, Orkut an@dpace. For a Hyperboloid model with curvaturéhe distance
Youtube [6]. Wilson et al. generated large social graphs abétween twai-dimension points: andy is defined as follows:

Here we briefly summarize other related projects on soc
applications and social network measurements.



TABLE Il
RESPONSE TIME FORORION, RIGEL-S, RIGEL AND BFS.

n n n
Graphs | Orion  Rigel-S Rigel BFS
§(z,y) = arccosh 1+ Z e+ Z vi) = Z iyi | |l Eg;)pt 0.2us O.g:ﬁs 6.835 0.75s
i=1 i=1 i=1 L.A. 0.18s  0.33s 8.5us 1.027s
(1) Norway | 0.19us 0.3%s 17.8s | 1.44s

B. Computing a Hyperbolic Embedding of dimensions of the spaee We then study the magnitude of

We now describe a basic (centralized) algorithm for enapproximation errors as a function of the actual path lesgth
bedding a graph into our Hyperbolic space. At a high leveind examine the efficiency of our system by using the average
we follow the “landmarks” approach proposed in [4], wherguery latency. Here, we show the results on the three Fakeboo
we first choose a small number éfnodes as landmarks,graphs in Table | and omit other similar results for brevity.
wherel < N and N is the number of nodes ir. We first 1) Impact of Curvature and Dimensionn order to derive
use a global optimization algorithm to fix the coordinates @he parameters that maximize the accuracy of our system, we
these landmarks, such that their distances to each othkein gyvaluate the impact of two important parameters of Hypécbol
coordinate space are as close as possible to their matchihg gpace: curvature and number of dimensions.

distances in the graph. We refer to this step as bootstr_@_pm In}oact of Curvature. The curvature: of a Hyperbolic space
Once the landmarks are set, we compute the positions.of . .
is F\n important parameter that determines the structurbeof t

all remaining nodes, such that each node’s distances to s"%ace. We vary curvature from50 to 0 and investigate the

landmarks in the coordinate space closely match its acty ect on the accuracy of the distance estimation using our

) . €
node distances to those landmarks in the graph. three Facebook social graphs,

The rationale behind this approach is that computing . .
B Figure 2 plots the average relative error when the curvature
ground truth,”i.e. the shortest path length between any two

. ) e o ... varies between-50 and 0. When the curvature i), the
nodes, is an expensive task. Thus “calibrating” node possti . . . .
. S . 5 Hyperbolic space is equivalent to a Euclidean space. We
in a pairwise fashion would generate a large numBErN <))

: : " _include this value as the rightmost point in our plot. From ou
of breadth-first-search (BFS) computations. By choosmgr sults, we see that the average error decreases sigdificant
small, constant number of landmarks, we only need to comp

d § the curvature approached. We performed further fine
a BFS tree for each landmark. The resulting values repre-.. . ,
- rain tests with curvature values around, and find that the
sent shortest path lengths from all remaining nodes to thegse
- . . : accuracy of our system reaches a plateau relarResults at
landmarks, and are sufficient to calibrate their coordmates
. o curvature of -1 are30% more accurate than results from a
in [4], we choose the landmarks as nodes with highest degrEe, . .
as a way to efficiently approximate nodes with high centralit telidean system, shown in the plot as curvatur®oThus
y y approxir o 9 ¥ we use the curvature value atl in the rest of this paper.
Next, to compute the coordinate position for a graph node, _ _ _ _
we randomly select6 out of thel (I = 100) landmarks. Since Impact of Dimensions. = The number of dimensions of a
we know the actual distances in the graph between the n8®ometric space plays an important role in determining the
node and itsl6 selected landmarks, we apply the SimpleRccuracy level in the estimate of distances between nodes. W
method [32] to compute an optimal coordinate to minimizéary the number of dimensions from and 14 to evaluate

the deviation in distances between the node and its landmakcuracy. Since the results are similar to [#§. accuracy
in the coordinate space and their actual distances. improves as the number of dimensions increases, we omit the

result for brevity. As in Orion, 10-dimensions provides ado

Optimizing Local Paths. It has been shown in Internetbalance between complexity and accuracy in our Hyperbolic
embedding systems [17] that the largest errors are intexdiuc plexity y yp

when estimating paths or node distances for nearby nd)des,graph coordinate system.

nodes separated onlv by 1 or 2 hoos. In addition. accura 2) Accuracy and Per-query Latencyn this section, we
: -P ) ” y by < nops. | ton, Ura¥amine accuracy as a function of path length, and also
in resolving “local” graph queries is critical to many graph

. o 2. 'compare per-query latency across a number of systems. We
operations. In the context of graphs, this is an easy liiitat P per-query y y

. ; . . use a 10-dimensional Hyperbolic space with curvature bf
to overcome, since 1-hop neighbors are easily accessiale vi

graph representations,g. edge lists or adjacency matricesAccuracy vs Path Length. We explore the accuracy of
Rigel uses local neighbor information to augment the nodkedictions for paths of different lengths. Figure 3 shoks t
knowledge about its close-by topology. Before answering&/€rage absolute errors per path length on three Facebook
query for a pair of nodes, Rigel first checks their adjacen&faphs by leveraging two embedding systems: Orion (using
lists to detect if they are direct neighbors or 2 hop neighbofn Euclidean space) and Rigel. The bottom three lines are

(share a node in their adjacency list). the results of Rigel where the average absolute error pér pat
_ length ranges betwed&nand0.9. Orion results are the top three
C. Embedding Accuracy on Real Graphs lines in Figure 3, and the average absolute error per patjtien

We now investigate the impact on embedding accuracy bgnge from0.6 and 3.4, significantly higher than Rigel. This
two important parameters, curvature of the spaaed number clearly shows that using hyperbolic spaces improves acgura
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Fig. 2.  Impact of hyperbolic curvature on Fig. 3. Average absolute errors for paths ofFig. 4.  Average absolute errors comparing
accuracy. different lengths comparing Rigel and Orion. Rigel and the “Landmark” scheme from [2].

Also note that Orion produces extremely large errors foselocost of this operation is negligible since simple partiinmn

node pairs. These errors are completely eliminated by Rigetchemes are sufficient. Finally, the parallel embeddinguieod

local path optimization. embeds all graph nodes in parallel across the servers,iaiow
We also compare Rigel's accuracy against the “LandmarRarallel Rigel to achieve significant speedup.

scheme in [2]. Figure 4 shows that Rigel significantly outper We have implemented a fully functional prototype of paral-

forms [2] regardless of the real distance between nodes. lel Rigel, and used it to embed the largest graph we have, the

Query Latency. Table Il shows the average per—quer)43 million-node graph from the Renren online social network
response time to compute the distance of two random node seen in Figure 5, running the centralized version of Rigel

using Orion, Rigel, and BFS. We also list the query time &7 @ single large memory server (Dell PowerEdge server
Rigel without the local path optimization labeled as “R'+geIWIth 32GB of RAM) required 136 hours to perform initial

S.” Rigel-S requires slightly longer time than Orion, besau P0OtStrapping (computing BFS trees), and more than 10 days
of the increased complexity of the hyperboloid coordinaf@ 40 the actual node embedding of all graph nodes. Applying
computation. Memory access in Rigel's local path optiniarat parallel Rigel to the same graph over a cluster of 50 servers
adds several microseconds to each query. But overall, RigdP€ll Xeon, 2GB) reduces the parallel bootstrap processio 2
per-query time is stilb orders of magnitude faster than prghours, and embedding to only 6.4 hours.

B. Experimental Results

Here, we use four of the largest social graphs available
day, Flickr, Orkut, Livejournal and Renren in Table I, to
0(1=,xamine the accuracy and efficiency of Parallel Rigel.

IV. EMBEDDING MASSIVE GRAPHS

Since the complexity of Rigel embedding scales Iinearlly
with graph size, this processing overhead presents a signifi 0
performance bottleneck for large graphs with millions
nodes, and prevents practical applications of Rigel onelardccuracy. We first examine the accuracy of Parallel Rigel
social graphs. Here, we describe a mechanism to address liscomparing it to Orion. In Figure 6 we plot the average
challenge by parallelizing Rigel's embedding process ssroabsolute error for different path lengths using ParallejeRi
multiple servers, named as “Parallel Rigel”. We then evaluaand Orion. Like our previous results on smaller Facebook

its impact using four large social graphs. graphs, Parallel Rigel not only significantly improves the
o ) accuracy of long distance prediction, but also reducesttoe e
A. Parallelizing Graph Embedding in short distance estimation. We also verify that ParaligeR

Parallelizing Rigel is feasible because of two reasonst,Firperforms similar to the original Rigel on these graphs.
landmark bootstrapping requires computing BFS trees Cbm_éomputation Efficiency. We evaluate the efficiency of

from each landmark, which can be run independently and @, 5 1e| Rigel by comparing its computation time to that of
parallel on different servers. Second, after bootstrapmach iqina| Rigel. By utilizing a cluster of servers, ParalRigel
graph nodeu can also be embedded independently and {jsinytes the tasks of landmark bootstrapping and graph
parallel based on the coordinates of the global landmarksnpeqding over multiple parallel servers. While ParaligeR
Because the number of nodes is large, we just need {geg require an extra step of graph partitioning by distiriou
distribute nodes across servers to ensure load balancing. o4es among machines, it only leads to a minor increase in
Parallel Rigel.  We integrate the above mechanisms wittime complexity, less than 0.1% of the original bootstragpi
the original Rigel design, calledParallel Rigel Figure 5 time. Table Ill shows the comparison when Parallel Rigekrun
demonstrates the Parallel Rigel system on top of and castrasn a cluster of 50 servers. We see that Parallel Rigel achieve
it to the original Rigel design. It consists of three compcelose to linear speedup, even slightly better due to reduced
nents:parallel bootstrappinggraph partitioningandparallel virtual memory paging on each server.

embeddingThe parallel bootstrapping module distributes BFS To examine the impact of the cluster size, we compare the
tree computation related to each landmark across serveegs, speedup of Parallel Rigel by using 5, 10, 20 and 50 servers,
or more landmarks per server. The graph partitioning modulMhere speedup is the decrease in embedding time. Figure 7
provides a balanced distribution of nodes across servéis. Bhows that run time decreases almost linearly with cluster s



TABLE Ili
COMPARING THE TIME COMPLEXITY OFRIGEL AND PARALLEL RIGEL (P-RIGEL) USING A CLUSTER OF50 SERVERS

Graphs Bootstrap (hours)| Graph Partitioning (hours) Embedding (hours) Response
Rigel P-Rigel P-Rigel Rigel P-Rigel BFS Rigel
Flickr 1.4 0.028 0.003 9.7 0.24 24.5s 12.9s
Orkut 7.5 0.15 0.005 19.4 0.42 56.2s 36.4s
Livejournal 4.8 0.096 0.008 32.2 0.66 65.2s 8.4is
Renren 136.2 2.7 0.07 250 6.4 1598.5s  28.8s
Parallel Rigel & T oron: Livdjournal & e " Fiickr ¢
P s — e s e e e = = == a £ sl Orion: Orkut Orkut
| Hﬁ_‘ | 5 Orion: Flickr =« 40 Livejournal
| - ! s 5 Orion: Renren & 1 35 - Renren £
| |Parallel Bootstrap Graph. Parallel Embedding | w Rigel: Livejournal p. S 30+t
1| 50 machines Partitioning 50 machines | o 4t Rigel: Orkut 3 [
| 2.7 hours 0.07 hours 6.4 hours | 3 Rigel: Flickr e 3 25
————— == - 2 3 Rigel: Renren @ @ 20r
_____ v < 29 15 |
Renren Graph Embeddi qé’ ‘E B 4 10 -
43M nodes; Bootstrap T machine st ok 5
136.2 hours 10 days Z o0 v 0 s o K
______________ 1 2 3 4 5 6 7 8 9 10 1 5 10 20 50
Rigel Path Length # of machines

Fig. 5. A high-level view of how embedding is Fig. 6. Average Absolute Error for different pathFig. 7. Average speedup achieved by Parallel
parallelized and its net impact on embedding latendgngths computed by Parallel Rigel and Orion. Rigel on different cluster configurations.
for Renren, our largest graph.

V. APPLICATIONS propagating information in an online social network. Folfgna
We demonstrate the effectiveness and efficiency of Rigd¥¢ most “central” node is defined as the node that has the
in social network analysis and applications by impIemeytiHOVVeS_t average noqle distance to _aII other n(_)de_s in the networ
several common graph applications. In each case, we compar€/Sing Rigel, we implement a simple application to compute

the accuracy of Rigel against that of Orion [4]. node centrality directly from node distance values, where a
_ _ _ node with a small average path length has a high centrality
A. Computing Separation Metrics score. As before, we examine the accuracy of our Rigel-

Social network graphs are known for displaying the “Sma#inabled application by computing the centralityaof= 5000
World” behavior. Graph separation metrics such as diametsandomly chosen nodes on the three Facebook graphs00
radius and average path length, have been widely usedramdomly chosen nodes each for Flickr, Livejournal Orkod a
examine and quantify the Small World behavior. But since = 100 nodes for Renren. For each graph, we sort these
each of these metrics relies on large numbers of node distanodes by centrality, and select the tbmodes. We compute
computations, computing them for large graphs can becothe “accuracy” of Rigel's centrality ordering by countiriget
extremely costly or even intractable. number of overlapping nodesn) in Rigel's top & nodes

Using Rigel, we build an application to compute the grapind actual topk centrality nodes as computed by BFS on
separation metrics listed above, and examine their acgurdlee original graph. We study the accuracy of our Rigel-based
by comparing their results to ground truth. Since computirgystem as the ratio of: to k.
shortest path length between all node pairs takes seveyal da We perform our experiments on all seven of our social
even for our smallest graph (Facebook Egypt), we takegsaphs, and find the results to be highly consistent. For the
random sampling approach to compute the ground truth. \West of this section, we will only report results for three of
randomly sample 5000 nodes from the three Facebook grapghsm: Facebook Los Angeles, Orkut and Livejournal. Figure 8
500 nodes from Flickr, Livejournal and Orkut, and0 nodes shows the centrality accuracy results for different valoies.
from Renren, and use shortest path lengths between thase pa$ expected, the accuracy of both Rigel and Orion increases
to derive the separation metrics. with largerk values. In general, Rigel consistently outperforms

We report the results in Table IV for Radius, Diamete®rion for different graphs and different values /af
and Average Path Length on seven different graphs, f8r
Rigel, Orion and Ground Truth. In general, Rigel considtent ™
provides more accurate results compared to Orion. MoreSocial networks such as Facebook and LinkedIn can best
importantly, Rigel provides results across all three mstthat Serve their users by ranking search results by the proxiafity
are extremely close to ground truth values. each result to the user in the social graph [21]. This is bezau

. ) users are likely to care about its social proximity to theyiori
B. Computing Graph Centrality of the search result as much as the quality of the resulf,itsel

Graph centrality is an extremely useful metric for socidle. a user would pay more interest to results from her close
applications such as influence maximization [22] and socifilend rather than those from an unrelated stranger.
search. For example, application developers can use nod®espite its usefulness, using social distance in searciises
centrality values to identify the most influential nodes fois highly costly due to the number of node distance computa-

Distance-Ranked Social Search



TABLE IV
COMPARING SEPARATION METRIC RESULTSAS COMPUTED BY RIGEL, ORION, AND BFS (GROUND TRUTH).

[ Metric ] Method [ Egypt L. A. Norway [ Flickr  Orkut Livejournal  Renren|
Radius Ground Truth 9 11 8 13 6 13 12
Rigel 8.7 11.0 7.5 12.7 6.4 12.2 12.0
Orion 9.2 10.7 7.8 12.6 6.3 12.0 12.1
Diameter Ground Truth 14 18 12 19 8 17 15
Rigel 14.8 17.9 11.7 18.6 10.2 17.7 14.9
Orion 14.4 17.8 12.2 17.3 10.0 16.8 14.9
Average Ground Truth| 5.0 5.2 4.2 5.1 4.1 5.4 5.0
Path Rigel 4.9 5.1 4.2 5.0 4.3 5.5 4.9
Length Orion 4.7 5.0 4.1 4.3 3.9 4.8 4.6
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Fig. 9. Average accuracy of social search queries thatrrdtp k& ranked nodes

tions necessary for each social search query. Instead, we ca V1. SHORTESTPATHS IN RIGEL
leverage Rigel’'s constant time node-distance functibynadi

build powerful distance-based social search applications A number of critical graph-based applications require not

only the length of the shortest paths, but also the actuates$to
path between two nodes. For example, on the Overstock social
To verify the impact of Rigel on distance-ranked socisduction system, users can search how they connect to the
search, we perform the following experiment. For each nodeller of a given object, and choose to buy from friends of
initiating a query, we seledt00 random nodes in the graph tofriends instead of complete strangers [1]. On LinkedIn, a
respond to the query. We sort the responses by their distangeer browsing another’s profile automatically shows anyasoc
to the query node, computed via Rigel and Orion, and retupaths (3 hops or less) connecting them.
the topk nodes to the user. We then compute the same topin this section, we describe a novel extension to Graph
k nodes using BFS for distance computation, and exami@@ordinate Systems that produces accurate approximaifons
the percent of overlapping nodes between the result sets ashartest paths by using node distance queries as a tool. We
measure of accuracy. We repeat this experini®0D times first describe how this extension to Rigel computes shotipat
on smaller graphse.g. Facebook graphs, anth0 times on between any two nodes. Next, we describe the Sketch algo-
our largest graphi.e. Renren. We vary: from 5 to 50, and rithm [33], an efficient algorithm for shortest path estifoat
show the results of L.A, Orkut and Livejournal in Figure 9and its followup algorithms including SketchCE, SketchCES
It shows that Rigel's hyperbolic coordinates consistentiyl and TreeSketch [34]. Finally, we compare Rigel’s shortast p
significantly outperform Orion’s Euclidean coordinatesn Oalgorithm against these algorithms on a variety of sociapbs
Livejournal, for example, when we rank the t&f; search in both accuracy and per-query runtime. We show that while
results, average accuracy of Rigel78% while Orion only Rigel requires similar preprocessing times to these alyms,
achievest0%. Rigel's shortest paths return query results 3-18 timesfast



while matching the best of these algorithms in accuracy. Finally, TreeSketch is a tree-based approach. At query time,
o ) ) TreeSketch builds two trees separately rooted in the source
A. Finding Shortest Paths using Rigel and the destination using precomputed paths to landmarks.
We now describe a heuristic that uses our coordinate syst&iven the two trees, the path search starts from both root
to find a good approximation of the shortest path connectifigdes, and iteratively explores more nodes from both trees.
any two nodes. Our algorithm, which we cRligel Pathsuses BFS computation starts from roots of both trees. For each
techniques reminiscent of the routing algorithm in [20].  Visited nodeu in a tree, its neighbors are compared with any
Given two nodesA and B, we start by computing the Visited nodev in the other tree. Once a common node is found,
distance between thed{ A, B). If the distance is 1 or 2 hops, the shortest path between source and destination is cotedru
we can use simple lookup on their adjacency lists to determitising the sub-path from source to nadethe edgeu, v), and
the shortest path between them. If the predict distancedsetw the sub-path from to the destination. While producing very
the nodes is greater than 2 hops, then we begin an iteratggcurate paths, TreeSketch is computationally slow duketo t
process where we attempt to explore potential paths betwdege construction and extensive search process.
the nodes using the coordinate space as a directional guide.
Starting from A, we use Rigel to estimate the distance of-
each of its neighborsV/* to B. The expected distance for We compare ourRigel Paths to Sketch, SketchCE,
a neighbor on the shortest path should dfel, B) — 1. If SketchCESC and TreeSketch in accuracy and query latency.
any _ne_ighb_or_’s estimated distance_; is withid dactor of that Experimental Settings.
prediction, it is considered a candidate to explore. Fohexdc
A’s neighbors that qualify as a candidate node, we repeat
process to obtain candidates for hop 2. This process imraég( [35]
until one of the candidate nodes is a direct neighboBof

Comparing Shortest Path Algorithms

To compare Rigel Paths against
&\rior work, we obtained the source code for the sketch-base

, a specialized database system optimized for efftcie
. ; o h storage and computation of large graphs. All experimentgewe
At each iteration of the algorithmie. for the n™ hop, performed on Dell quad-core Xeon servers with 24GB of

we kegp a rr_1aximum number of candidaés.. to explore. RAM, except for Renren experiments, which were performed
Choosing this number manages the tradeoff between explgf gimijarly configured Dell servers with 32GB of RAM.
ing too many paths (and extending processing latency) and

exploring too few paths (and finding a dead end or inefficiefccuracy.  For each graph in Table I, we randomly sample

paths). In practice we choo€&,,.. to be 30, and to be 0.3. 5000 node pairs, and compare the shortest path results of
Rigel Paths, Sketch, SketchCE, SKetchCESC, and TreeSketch

B. Sketch-based Algorithms for Shortest Path algorithms against the actual shortest paths computedié B

We first describe the state-of-the-art algorithms for logat F19uré 10 shows the average absolute error of the five
different algorithms broken down by length of the actual

shortest paths. There are four algorithms all based onntaria i
of the Sketch algorithm [33], [34]. shortest path. Here we define the absolute error as the ad-

] . ditional number of hops in the estimated path compared to
Sketch [33].  Sketch is a landmark-based solution wherg,a real path. As before, we only show the Facebook Los

each node computes its shortest paths_ to the landmarks ﬁ’h‘aeles, Orkut and Livejournal graphs for brevity, because
then uses common landmarks between itself and another ngglg, results are representative of results on other graps

in the graph to estimate their shortest paths. This methpdits show consistent trends across the graphs. ThehSketc
selectsr = |log V| sets of landmark nodes, where is the 54 SketchCE algorithms are highly inaccurate, and gdgeral
number of the graph nodes. For each node, Sketch computeptsyce shortest paths that are roughly 2 hops longer thean th

shortest paths tb (k=2) different landmarks in each set. Th0S€a5| nath. TreeSketch and Rigel Paths are the most accurate
shortest paths are precomputed by using the results of BE§orithms and often indistinguishable from each other.
trees rooted in each landmark. Therefore, for an undirecte e show the CDF of absolute errors of the different

graph, each node is associated withr shortest paths. algorithms in Figure 11. This shows a clear picture of the
Cycle Elimination, Short Cutting and TreeSketch [34]distribution of errors. Rigel paths and TreeSketch are loy fa
These three algorithms are variants of the basic Sketch #pe most accurate algorithms. Both produce exact shortest
proach for finding shortest paths [3&]rst, Cycle Elimination, paths for a large majority of node pairs. Both are signifiyant
called SketchCE, improves Sketch by simply removing cycléetter than SketchCESC. SketchCE and Sketch are fairly
in the estimated paths computed by Sket8econd,Short inaccurate, and provide paths with multiple hop errors for
Cutting improves Sketch by searching for bridging edgéke overwhelming majority of node pairs. While Rigel Paths
between two nodes andy, wherez is on the path between provides accuracy that matches or beats all of the Sketatdbas
the source and the landmark andis on the path from algorithms, we will show later that it is significantly fastBan

the landmark to the destination. If such an edge is founkipth SketchCESC and TreeSketch (ranging from a factor of 3
this edge replaces the sub-path through the landmark. Ttosa factor of 18 depending on the specific graph).

approach is called as SketchCESC. It locates shorter pathginally, we also compared the length of the shortest paths
but dramatically increases computational time. found by our Rigel Paths algorithm to node distance values
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COMPARING THE PREPROCESSING TIMES AND PERUERY RESPONSE TIMES OIRIGEL PATHS, SKETCH AND VARIANTS SKETCHCE, XETCHCESCAND
TREESKETCH. PREPROCESSINEEMBEDDING TIME FORRIGEL (AND RIGEL PATHS) IS FOR SINGLE SERVERNON-PARALLEL VERSION).

CDF

Graphs Preprocessing (Hours| Per-Query Response Timgg)
Rigel Sketch Rigel  Sketch  SketchCE Rigel Paths  SketchCESC  TreeSkgtch
Egypt 1.3 0.43 6.8 1781 1792 3667 38044 62407
L.A. 15 0.54 8.4 936 946 4008 20597 56828
Norway 1.4 0.67 17.8 1492 1501 4621 21472 59635
Flickr 9.7 3.3 12.9 17157 17178 41279 732332 63089(¢
Orkut 19.4 131 36.6 21043 21054 49470 273586 730284
Livejournal | 32.2 14.2 8.4 75101 75114 28355 253976 348464
Renren 250 348 28.9 124327 124334 181814 546925 2594756
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Fig. 12. CDF of computing time in path finding among Rigel BatBketch, SketchCE, SketchCESC and TreeSketch.

estimated by Rigel. Interestingly, Rigel Paths is more eate) graph into the coordinate space. For all Sketch algorithms,
with absolute errors below 0.3, compared to errors betwe®en ¢his is the time to compute shortest paths (using BFS) to all
and 1 hop by comparing Figure 10 and Figure 6. Rigel Path&their landmark nodes [34]. Our second component measures
achieves this higher level of accuracy because it leveraghe computational latency required to resolve each qudty. A

actual graph structure to compute its shortest paths.

Computational Costs.

experiments are run on a single server.

In Table V, we see that Rigel takes roughly 2—3 times longer

We now compare Rigel Paths andpreprocessing time. Note, however, that these measuresment

the four Sketch algorithms on computational time complexitwere run on only a single server. As shown in Figure 7, we
We break down our analysis into two components. First, wean distribute Rigel's preprocessing phase across meiltiya-
measure each algorithmggeprocessing time~or Rigel Paths chines with close to linear speedup. Thus, we can reduce Rige
(and Rigel), this represents the time required to embed theeprocessing by spreading the load over 2 or 3 machines.
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paths that are highly inaccuratieg. introduce an average of “Measurement and analysis of online social networks,Pioc. of the

2-3 additional hops in each path. Of the two best algorithms;, ﬁ‘%"i’;f'lgteg'e\tlv'i\giisu;ew;ggcgnfﬁfgﬁge W%?](;?'Y Dai. andBao

Rigel Paths and TreeSketch, Rigel paths returns results in"a “Understanding latent interactions in online social neteg in Proc.
fraction of the time required by TreeSketch and SketchCESC. of the ACM Internet Measurement Conference (IMZ)10.

: ; [8] T. S. E. Ng and H. Zhang, “Predicting internet networktaige with
The latency reduction ranges from3 (against SketchCESC coordinates-based approaches, Piroc. of INFOCON) 2002.

on Renren) to a factor of 18 (against SketchCESC on Flickr)g] p. Francis, S. Jamin, V. Paxon, L. Zhang, D. Gryniewicad &. Jin,
We show a CDF of these results in Figure 12. Rigel Paths is "An architecture for a global internet host distance estiomaservice,”

in Proc. of INFOCOM Mar. 1999.
clearly much faster than both TreeSketch and SketChCESC]?10] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldidacentralized

Finally, we also include the node-distance computatio®tim ~ network coordinate system,” iRroc. of SIGCOMM Aug. 2004.
from Rigel as a point of reference. Clearly, finding actud}l] S.Rao, “Small distortion and volume preserving embegssi for planar

: : - and euclidean metrics,” ifroc. of SCG 1999, pp. 300-306.
shortest paths is orders of magnitude more eXpenSIV? ”I?ﬂ L. Tang and M. Crovella, “Virtual landmarks for the Intet,” in Proc.

simply computing node distance. Luckily, the large mayooit of the ACM Internet Measurement Conference (IMOgt. 2003, pp.
graph analysis tasks only require node-distance computati 143-152.

r ) . . [13] Y. Shavitt and T. Tankel, “Big-bang simulation for enaolng network
and only user-interactive queries require the full shonesh distances in euclidean spacéZEE/ACM ToN vol. 12, no. 6, 2004.

between node pairs. [14] J. R. Lee, “Volume distortion for subsets of euclideaes: extended
abstract,” inProc. of SCG 2006.
VII. CONCLUSION [15] C. Lumezanu and N. Spring, “Measurement manipulatiod apace

Traditi | al ith f f . h Ivti selection in network coordinates,” iroc. of ICDCS 2008.
raditonal algorithms tor performing grapn analytics n(?16] S. G. Kobourov and M. Landis, “Morphing planar graphssipherical

longer scale to today’s massive graphs with millions of reode ~ space,” inProc. of GO 2007.
and billions of edges. Computing distances and shortebpal?] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. CrowcrofOn the

bet d li t the h t of t h IVsi tri accuracy of embeddings for internet coordinate systenmsProc. of
etween nodes lies at the heart of most graph analysis BI€UIC o Acm Internet Measurement Conference (IMZ)05.

and applications, and is often responsible for making thems] Y. Shavitt and T. Tankel, “Hyperbolic embedding of intet graph for
intractable on |arge graphs. distance esFimation and overlay constructioEEE/ACM Transactions
Wi Rigel, a hyperbolic graph coordinate syst on Networking vol. 16, no. 1, pp. 25-36, 2008
€ PVOPQSG gel, YP g p - Yy G[E’é] A. Cvetkovski and M. Crovella, “Hyperbolic embeddingdarouting for
that approximates node distances by first embedding graphs dynamic graphs,” ifProc. of INFOCOM 2009.

into a hyperbolic space. Even for graphs with 43 million rexdd20] F. Papadopoulos, D. Krioukov, M. Bogua, and A. VahdaGreedy

and 1+ billion edges, Rigel not only produces significantly L(;g'tvr?crds'ggcg‘s ,fj?'rg?(';yfofsfﬁlﬁgrggggt&og}(s embedded in gl

more accurate results than prior system, but also answeles n@1] A. Mislove, K. P. Gummadi, and P. Druschel, “Exploitirepcial net-
distance queries in 10’s of microseconds using commodit%/ works for internet search,” iroc. of HotNetsNov. 2006.

ti For th hall . task of W. Chen, Y. Wang, and S. Yang, “Efficient influence maxation in
computing servers. For tne more challenging task or comput- social networks” inProc. of ACM KDDQ 20009.

ing shortest paths, we propose Rigel Paths, a highly efficiges] S. Fortunato, “Community detection in graph®hysics Reportsvol.

algorithm that leverages Rigel's node distance estimates t 486, no. 3-5, pp. 75 — 174, 2010. _ .
| te shortest paths. The results are impressive. Ridbk l:)424] B. Viswanath and A. Post, “An Analysis of Social NetweBlased Sybil
oca p : p - Rig Defenses,” inProc. of SIGCOMM 2010.

produces exact shortest paths for the large majority of noge] C. Palmer, P. Gibbons, and C. Faloutsos, “ANF: A Fast Sedlable
pairs, matching the most accurate of prior systems. Anddsdo__ Tool for Data Mining in Massive Graphs,” iRroc. of KDD, Jul. 2002.
this quickly, returning results up to 18 times faster thatest [26] H. Kwak, C. Lee, H. Park, and S. Moon, "What is twitter, aci
a Y; g p ’ o network or a news media?” iRroc. of WWW 2010.

of-the-art shortest-path systems with similar levels @imacy. [27] F. Benevenuto, T. Rodrigues, M. Cha, and V. Aimeida, 4&ltterizing

Finally, we are releasing the code to Rigel for download User Behavior in Online Social Networks,” Proc. of the ACM Internet

t htto:// t b.edu/rigel. To the best of v Measurement Conference (IMQYov. 2009.

a p:/icurrent.cs.ucsb.edu/rigel. 10 the best or ouovkA [28] F. Schneideet al, “Understanding Online Social Network Usage from
edge, our system has already been deployed at several sociala Network Perspective” ifProc. of the ACM Internet Measurement

networking and gaming companies. Conference (IMG)Chicago, IL, Nov. 2009. _ _
[29] R. Kleinberg, “Geographic routing using hyperbolicasp,” in Proc. of
REFERENCES INFOCOM, 2007, pp. 1902-1909.

[30] N. Linial, E. London, and Y. Rabinovich, “The geometrfygraphs and
[1] G. Swamynathan, C. Wilson, B. Boe, K. C. Almeroth, and B. Y some of its algorithmic applicationsCombinatorica vol. 15, pp. 577—

Zhao, “Do social networks improve e-commerce: a study oriakoc 591, 1994.
marketplaces,” irProc. of SIGCOMM WOSN2008. [31] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao, “Fast and ddelanalysis
[2] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fasirtest path of massive social graphsArxiv preprint arXiv:1107.51142011.
distance estimation in large networks,” Broc. of CIKM Hong Kong, [32] J. A. Nelder and R. Mead, “A simplex method for functionnimiza-
Nov. 2009. tion,” The Computer Journalol. 7, no. 4, pp. 308-313, Jan. 1965.
[3] M. Rattigan, M. Maier, and D. Jensen, “Using of structimdices for [33] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrafysketch-
efficinet approximation of network properties,” Rroc. of KDD, 2006. based distance oracle for web-scale graphsPiioc. of WSDM 2010.
[4] X.Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao, “Orichortest [34] A. Gubichey, S. Bedathur, S. Seufert, and G. Weikumstfad accurate
path estimation for large social graphs,”Rnoc. of WOSINBoston, MA, estimation of shortest paths in large graphs,Pimc. of CIKM 2010.
June 2010. [35] T. Neumann and G. Weikum, “The rdf-3x engine for scatablanage-

ment of rdf data,"The VLDB Journalvol. 19, pp. 91-113, Feb. 2010.



